### Supplementary materials for:

## Organisation of the *Caenorhabditis elegans* small non-coding transcriptome: genomic features, biogenesis and expression

Wei Deng, Xiaopeng Zhu, Geir Skogerbø, Yi Zhao, Zhuo Fu, Yudong Wang, Housheng He, Lun Cai, Hong Sun, Changning Liu, Biao Li, Baoyan Bai, Jie Wang, Dong Jia, Shiwei Sun, Hang He, Yan Cui, Yu Wang, Dongbo Bu, Runsheng Chen

### Contents

- 1. Supplementary figure 1. Expression profiles and clusters
- 2. Supplementary figure 2. Distance from intronic ncRNAs to adjacent upstream and downstream exons.
- 3. Supplementary figure 3. Relationship between intronic ncRNAs and host gene expression.
- 4. Supplementary document 1. Capping probability
- 5. Supplementary document 2: Genomic location of the novel ncRNA genes
- 6. Supplementary document 3: ncRNA expression analysis
- 7. Supplementary document 4: Upstream and internal motifs of the C. elegans noncoding RNA loci
- 8. Supplementary document 5. C. elegans ncRNA biogenesis groups
- 9. Supplementary table 1. ncRNA biogenesis groups
- 10. Supplementary document 6: Estimates of the *C. elegans* small non-coding RNA number
- 11. Supplementary document 7. oligo sequences used in this work.
- 12. Supplementary sequences 1. All ncRNA sequences
- 13. Supplementary tables 2 & 3. Basic data of ncRNAs and their gene loci used in this study.

### **Supplementary figure 1**



**Fig. S-1** Expression patterns for 105 clustered ncRNAs (the figure includes both novel and known ncRNAs). L1s, starved overnight after hatch. L1m, m indicates the developmental midterm between the immediate preceding (L1s) and following (L1) stages. YA, Young Adult. MA, Mature adult. HS, Heat Shock treated (L4 worms at 30°C 3 hours). See supplementary document for time intervals.

### **Supplementary figure 2**



**Fig. S-2.** Distance (in bp) from intronic ncRNAs to adjacent upstream and downstream exons. The distances to the upstream exon from Group I and II loci ("motif loci") are significantly greater than from Group V loci ("non-motif loci"), suggesting that independently transcribed Group I and Group II loci require a upstream region of a minimum length to accommodate core promoter elements. Group V ncRNAs are transcribed from the host gene promoter, and excised from pre-mRNA or processed from intron lariats, thus having a lower requirement for an upstream sequence length. The size of the region downstream of intronic loci seems not correlated to the mode of biogenesis.

### Supplementary figure 3



**Fig. S-3.** Relationship between intronic ncRNAs and host gene expression. The number of clones of each intronic ncRNA species in biogenesis groups II and V (see Supplementary table 1) were plotted against the average number of EST found for their respective host genes. For Group V ncRNAs, assumed to be excised and processed from pre-mRNA or spliced introns, there was a positive relationship between the number of host gene EST hits in WormBase (Harris et al., 2003) and the library clone number (R2 = 0.23). The low R2 value is not surprising given the type and size of data used for the plot, however it may be caused by incompletely intron-processed ncRNAs (thus accounting for samples with high host gene and low ncRNA values). No positive relationship was found for the assumedly independently transcribed Group II ncRNAs. Independently transcribed ncRNAs, whilst the expression of their host genes expression appear be lower than those of co-transcribed ncRNAs.

## Supplementary document 1: Capping probability

The library construction procedure included a step to distinguish between 5' capped and non-capped RNAs. Prior to 5' end linker ligation, the ncRNAs were split into to aliquots, one treated with PolyNucleotide Kinase (PNK, Fermentas) to phosphorylate noncapped RNA, the other treated with Tobacco Acid Pyrophosphatase (TAP, Epicentre) to remove 5' end methyl-guanosine caps form capped RNA. This generated two types of libraries, TAP libraries containing mostly 5' capped ncRNAs, and PNK libraries with mostly non-capped ncRNA

For the most known and abundant capped ncRNAs (U1, U2, U4, U5), clone numbers were used to determine the probability that an capped ncRNAs be cloned in TAP or PNK libraries. Among 407 clones, 395 were present/found in the TAP library and 12 reads in the PNK library. For non-capped ncRNA, 5.8 S rRNA clones were used, which had a distribution of 148 and 21 clones in TAP and PNK libraries, respectively.

We also investigated why a number clones occurred in the "opposite" library, and found that almost all incorrectly cloned sequences were 5' truncated, probably brought about the in experimental steps. As we have no information on the exact 5' end structures of the novel ncRNAs other than observed differences between sequence,, we used all sequences reads to determine the probabilities of the cap status.

Table1. Distribution of clones/sequence reads of known capped and non-capped ncRNA in TAP and PNK library

|            | Including partial       | ncRNA reads | Ignoring partial ncRNA reads. |             |  |
|------------|-------------------------|-------------|-------------------------------|-------------|--|
|            | TAP library PNK library |             | TAP library                   | PNK library |  |
| Capped     | 97% (395)               | 3% (12)     | 100% (175)                    | 0           |  |
| Non-capped | 12% (21)                | 88% (148)   | 0                             | 100% (114)  |  |

The probability of an ncRNA, with *t* clones in the TAP library and *p* clones in the PNK library, to either be capped [P(C|D)] or noncapped [P(N|D)] is determined by the following formula:

P(C|D) / P(N|D) = (0.97 t x 0.03 p) / (0.12 t x 0.88 p)P(C|D) + P(N|D) = 1

According to the calculated probabilities of all ncRNAs, we divided them into five groups, assigned with a value ranging from 1 to -1. These value is used in supplementary tables 2 for capping possibility annotation.

| Probability                   | 1                 | Assigned value |
|-------------------------------|-------------------|----------------|
| > 95% probability of being    | capped            | 1              |
| > 80% probability of being    | capped            | 0.5            |
| Information insufficient to d | etermine cap star | tus 0          |
| > 80% probability of being    | non-capped        | -0.5           |
| >95% probability of being     | non-capped        | -1             |

For ncRNAs with only one sequenced clone and a possibility of greater than 95% to be capped, we assigned them to the >80% group to reduce risk of faulty determinations due to too few samples. We also remove reads from the estimate in cases of affirmed truncations.

## Supplementary document 2: Genomic location of the novel ncRNA

### genes

The genomic locations of the novel small RNAs can be divided into several categories (tab. S-1). A majority of the novel loci (55%) are located in sense direction within a known or putative transcript of another gene, of which intronic loci constitute the larger part (51%). Among loci found within an intron, a considerable fraction (24% of all novel loci) is also located within a *C. elegans* operon. Two loci are found in either introns or UTR regions, depending on which frame is used for translation of the protein, and one locus (CeN42) covers the 3' end of an exon and the 5' end of the following intron.

The approximately 1/3 of loci found outside any known transcribed region are to a large extent located in relative vicinity to a protein coding gene (< 1 kb), whereas no locus is more than 10 kb away from a known or predicted transcribed gene. One locus is found in the antisense direction to a coding exon.

Table S-1. Distribution of novel small RNA genomic locations in C. elegans. It should be noted some RNAs may have several loci. All ncRNAs located in operons are found in introns (or intron + exon) of the operonic genes. The total number of genomic loci is therefore different both from the number of novel small RNAs, and from the sum of loci reported in the table. The "All" column refers to the loci of known plus novel ncRNAs detected in our screen.

|                                       | Number of n | ncRNA loci |  |  |
|---------------------------------------|-------------|------------|--|--|
| Genomic location                      | Novel(%)    | All (%)    |  |  |
| Within transcribed sequence (sense)   | 55 (54.5)   | 90 (45.5)  |  |  |
| Intron                                | 51 (50.5)   | 85 (42.9)  |  |  |
| In intron or UTR (cen95, cen106)      | 2 (2.0)     | 2 (1.0)    |  |  |
| Overlapping exon and intron (cen42)   | 1 (1.0)     | 1 (0.5)    |  |  |
| In UTR (cen59)                        | 1 (1.0)     | 1 (0.5)    |  |  |
| Overlapping 5'UTR and the ORF (cen4.) | l) 0 (0.0)  | 1 (0.5)    |  |  |
| In operon                             | 24 (23.8)   | 29 (14.6)  |  |  |
| Antisense to transcribed sequence     | 10 (9.9)    | 25 (12.6)  |  |  |
| - to intron                           | 10 (9.9)    | 23 (11.6)  |  |  |
| - to exon (cen107.4)                  | 0 (0.0)     | 1 (0.5)    |  |  |
| - to UTR (cen4.17)                    | 0 (0.0)     | 1 (0.5)    |  |  |
| Intergenic                            | 36 (35.6)   | 83 (41.9)  |  |  |
| All                                   | 101         | 198        |  |  |

## 1. Intronic ncRNA genes

Intronically located novel ncRNA genes comprise 54 loci, located to 48 different known or predicted protein-coding genes. Altogether 21 different protein functional classes are represented among the genes hosting the intronic small RNAs, however, genes coding for ribosomal and ATP-binding proteins make up 30% and 19% of all functionally annotated genes respectively.



*Figure 1. Functional class distribution of coding genes encoding an intronic small RNA transcript. "Other" are various functional classes represented by only one gene each.* 

## 1.1 CeN96

The RNA CeN96 represents a peculiar case of an intron located transcript. It is located to introns in two different genes, rpI-7A (Y24D9A.4a) and Y73B3A.18, on chromosomes 4 and X, respectively. The two CeN96 loci differ in 4 bp only, and overlapping parts of their host genes and the surrounding sequence show more than 85% homology (nearest 500 bp), most likely resulting from a chromosomal translocation. RpI-7A on chr 4 encodes a ribosomal protein, whereas the function of Y73B3A.18 has not been experimentally established.

## 1.2. CeN42 spans an exon-intron border

CeN42 was first mistaken for a known transcript, as its sequence is partially covered by at least one EST. However, it turned out that this H/ACA snoRNA-like transcript derives from a loci which covers the 61 last basepairs of exon 4 in the putative (partially confirmed) protein kinase gene R166.5 (I), and extends 70 bp into the succeeding intron. The CeN42 locus is preceded by a UM2 element entirely embedded in R166.5 exon 4.

The CeN42 transcripts was represent by no less than different clones in our library, and confirmed by Northern blotting, thus it seems unlikely that it should represent a fragment from R166.5 pre-mRNA degradation.

## 1.3. RNA genes located in either intron or UTR

A few RNA loci fall within a part of a coding gene which is either a UTR or an intron, depending on splicing and/or frame usage of different forms of the protein. RNA CeN106 is located in intron 2 (sense) or in the 3' UTR of of ubl-1 ("Ubiquitin-like family protein 1, isoform a/b"; "H06I04.4a/b";), depending on whether form a or b is translated.

RNA CeN59 could be located either in the 5' UTR or in intron 5 of the hypothetical gene/protein Y71F9AM.4 (or .3). When the reading frame supplied by WormBase (1) is used, it would be intronic.

RNA CeN95 is similar to CeN59 in that it is either located in the 5' UTR or in the first intron of two alternative frame usages of the Y37E3.8 gene. WormBase (*1*) only gives the longer frame (.8a), which is the ribosomal protein L27, and in which CeN95 is intronic. RNA CeN88 is located in the (last) intron of the same gene.

## 2. Small novel ncRNA genes located in operons

The *C. elegans* genome is particular among eukaryotes in that a substantial fractions (15%) of its genes are located in operons, a feature it thus far only found in the *Oikopleura dioica* outside the bacterial realm (2, 3). Operon-located genes shared the common exon-intron mosaic found in most eukaryotic coding genes, however, when the operonic pre-mRNA is processed, an additional 22 nt leader sequence is added to the 5' end exon of all downstream genes before the introns are spliced out (2).

Of all novel small RNAs detected in this study, 32 have genes located in operons, all within an intron. A few operons contain several small ncRNAs, located in different introns of the same or different genes. Although genes of most functional classes are found in operons, *C. elegans* genes located in introns show a substantial bias towards ribosomal proteins and proteins involved in to RNA degradation (2). Out of 22 annotated operonic genes hosting one or more small RNA, 8 codes for ribosomal proteins, whereas the remaining are distributed on various different classes (fig. 2).

As ribosomal genes are highly overrepresented among operonic genes in *C. elegans* (2), it seems more likely that the small non-coding RNAs are located to operons due to their preference for ribosomal genes, than due to preference for location in operons *per se*.



*Figure 2. Functional distribution of operonic genes hosting one or more small RNA genes. "Other" are various functional classes represented by only one gene each.* 

## 3. RNAs of intergenic location

Thirty-nine small RNAs have loci outside known or predicted transcripts of other genes (tab. S1). Nearly 70% of these are located in relative proximity to (within 1 kb of) known or predicted coding genes, with an equal distribution of upstream and downstream partners. The remaining RNA loci are mostly within 5 kb from a coding gene, and no locus is more than 10 kb from a coding gene.

### 3.1 CeN53

RNA CeN53 appears to have two adjacent intergenic genomic loci on chromosome I. However, both are located within two approx 8 kb sequences with absolute sequence identity, including the entire or a large part of the nearest upstream coding gene. Most likely this represent an error during assembly of the *C. elegans* genome, if not, it might be a very recent duplication event. CeN53 has a near homologous sequence in the *C. briggsae* genome, however, the surrounding sequences are not conserved.



Figure 3. The two intergenic loci of CeN53. The chromosomal regional covering the nc20 loci is assembled from two BACs (T19B4 and C04F1), with an overlapping sequence of 200 bp. b. The sequences rendered in red cover two entirely identical 8.1 kb framents, however, the 200 bp overlapping sequence at the 5' end of the C04F1 BAC does not have a identical sequence at the 5' end of the 8.1 kb (red) sequence in the T19B4 BAC.

## 4. RNA CeN107-4 is located antisense to ORF

One RNA, CeN107-4, is located antisense to the last exon of the predicted gene B0284.1, overlapping codons 375-447 (out of 481), however the last approx 18 nt of the RNA matches the supposed locus poorly. The RNA sequence is conserved in *C.briggsae*.

- 1. T. W. Harris et al., Nucl. Acids Res. 31, 133 (January 1, 2003, 2003).
- 2. T. Blumenthal, K. S. Gleason, Nat Rev Genet 4, 112 (Feb, 2003).
- 3. P. Ganot, T. Kallesoe, R. Reinhardt, D. Chourrout, E. M. Thompson, Mol Cell Biol 24, 7795 (Sep, 2004).

## Supplementary document 3: ncRNA expression analysis

Total RNAs were extracted from worms at 15 different conditions: the mixed stages (freely cultured worms with all developmental representation), Dauer, Heat Shock treated (L4 worms at 30°C 3 hours) and 12 different developmental stages. These were: Egg, L1s(starved overnight after hatch), L1m (m indicates the developmental midterm between the immediate preceding (L1s) and following stages (L1)), L1, L2m, L2, L3m, L3, L4m, L4, Young Adult (YA) and Mature adult (MA). All development stages were determined by time of culture since feeding of L1s worms at 20°C.

| stage      | L1s | L1m | L1 | L2m | L2 | L3m | L3 | L4m | L4 | YA | MA |
|------------|-----|-----|----|-----|----|-----|----|-----|----|----|----|
| time(hour) | 0   | 8   | 13 | 18  | 22 | 27  | 32 | 38  | 44 | 56 | 82 |

Northern blotting were performed as described in the Method section. Blot signals were collected by an image system *ChemiCapt 3000 (Vilber, France)*, and then anaysized by *Quantity One version 4.3.1(Biorad, USA)*. Normalised intensities were then transformed into relative ncRNA contents (1.0 represents the expression abundance of U5 snRNA in 1ug total RNA sample from mixed-stage worms). Blots with strong background or faint signals or containing dubious alternative bands were removed from further expression analysis. In total, data from 106 ncRNAs, including 20 known ncRNAs were used for further analysis.

Standard Deviation (SD) and Coefficient of Variation (CV) of the expression levels, and mean expression level( $E_m$ ) of each ncRNA was calculated,  $CV_{median}$  being the median of all CVs.

 $SD = sqrt(\Sigma(E_i - E_m)^2)$ 

( $E_i$  being the expression level at the *i*th condition (*i* is from 1 to 15).

CV = SD / E

A Z score was calculated as follows:  $Z_i = (E_i - E_m)/MAX \{SD, E_m * CV_{median} \}$ 

If  $|Z_i \ge 2|$ ,  $E_i$  was considered as significantly higher  $(Z_i \ge 2)$  or lower  $(Z_i \le 2)$  expressed than the mean expression level  $(E_m)$ .

If  $|-1 < Z_i < 1|$  at all conditions, the expression level of the ncRNA was considered unvaried. Unvariedly expressed ncRNAs were not included in the cluster analysis.

To simplify creating of the image (Figure S-1)  $Z_i$  was used instead of  $E_i$  for hierarchical clustering analysis. This did not change the Pearson correlation values.

To further analyse the two ncRNAs highly expressed at both the egg and MA stages, mRNA expression data from 6 development stages from [1] were combined with ncRNA expression data  $(\log_2(E/E_{mix}))(E_{mix}$  was the expression levels from the mixed stage). Pearson correlation coefficients for each ncRNA-mRNA pair were calculated, and the top 200 mRNAs were selected, hoping that these 200 pairs might give some hints concerning the functions of the corresponding ncRNAs.

## Supplementary document 4: Upstream and internal motifs of the C.

### elegans noncoding RNA loci

165 *C. elegans* noncoding RNAs corresponding to 198 loci in *C. elegans* genome were identified through out our experimental procedure. In order to detect possible conserved internal or upstream sequence features of these ncRNAs, were submitted the transcribed sequences, or their immediate 5' flanking regions, to analysis by the motif discovery software MEME [1].

### Discovering the ncRNA Upstream Motifs

The first 100 bp upstreams of the transcription start site of 198 ncRNA genes were extracted from *C. elegans* genome from WormBase [2] and used as the input sequence set for MEME [1]. The parameters entered for MEME were "-dna -nmotifs 10". Some of the 10 motifs are trivial as they belong to only one single RNA family. However, 3 motifs were found upstream of more than 3 different RNAs or RNA families indicating they may be conserved upstream regulatory elements of several different noncoding RNAs. We labelled these UM1, UM2 and UM3. Further analyses provided indicated that these UMs are biological meaningful. The basic information of UMs are shown in table 1.

Table 1. Statistical data of the upstream motif search. The table gives the motif size in bp ('width'), the total information content ('bits'), number of occurrences in the training set ('sites'), log likelihood ratio ('llr') and E-value of the three upstream motifs. According to the description of the MEME software [1], the statistical significance of a motif is based on its log likelihood ratio, its width and number of occurrences, and the background letter frequencies. The E-value is an estimate of the expected number of motifs with the given log likelihood ratio (or higher), and with the same width and number of occurrences, that one would find in a similarly sized set of random sequences.

| Motif      | E value                | bits | width | sites | llr  |
|------------|------------------------|------|-------|-------|------|
| UMI        | $4.0 \times 10^{-521}$ | 34.0 | 50    | 84    | 1978 |
| <i>UM2</i> | $7.3 \times 10^{-179}$ | 29.5 | 50    | 48    | 982  |
| UM3        | $1.1 \times 10^{-38}$  | 53.3 | 50    | 9     | 333  |

### UM2 and tRNA

A search for additional UM2 motifs in the *C. elegans* genome reveal that a large fraction of the genomic UM2 hits overlapped with annotated tRNA and pseudo-tRNA genes (See SM section on ncRNA estimates). There are no tRNA annotations upstream of any of the 198 loci of our ncRNA, however, 4 pseudo-tRNA annotations (F19H8.t1,

D1046.t1, T08B2.t1, and Y59E1B.t1) upstream of four UM2-containing loci (cen62, cen55, cen43, and cen68, respectively).

In order to determine what may be the relationship between UM2 and tRNA, we extracted *C*. *elegans* tRNA sequences based on WormBase annotation [2], and applied the MEME motif discovery procedure on the tRNA data set. The tRNA motif profile showed a certain degree of similarity to the UM2 profile, in particular did the box A and box B motifs of the internal tRNA promoter appear to quite similar to the 5' and 3' ends of UM2, respectively.

We therefore asked MEME to find the two most conserved 15 bp motifs within the tRNA dataset of 387 sequences. The two motifs produced largely correspond to the *C. elegans* tRNA box A and box B. We then applied the same procedure first 100 bp upstream of the 47 UM2-containing loci. The search resulted in one motif present at 47 loci, which generally overlaps the first 15-16 bp of UM2 (therefore labelled the Front Box, or FB), and another motif, present at 35 loci, which stretches from bp 41 UM2 and beyond its 3' end (labelled the Tail Box, TB). Statistics concerning the MEME search is found in table 2.

*Table 2. Statistics summary for the 15 bp motif MEME searches in the tRNA and UM2-containing loci data sets. (See tab. 1 for explanations).* 

| Motif        | E value bits            | wia  | !th | sites          | llr  |
|--------------|-------------------------|------|-----|----------------|------|
| tRNA "box A' | $3.3 \times 10^{-852}$  | 14.7 | 15  | 364 out of 387 | 3699 |
| tRNA "box B' | $3.5 \times 10^{-1312}$ | 18.8 | 15  | 365 out of 387 | 4754 |
| UM2 FB 6     | $5.7  x 10^{-78}$ 14.   | 5 15 |     | 47 out of 47   | 471  |
| UM2 TB       | $1.4  x 10^{-50}$       | 15.3 | 15  | 35 out of 47   | 371  |



Figure 1. The 15 bp motifs found in tRNAs and upstream of UM2-containing loci. The two short motifs Front Box (FB) and Tail Box (TB) found upstream of UM2-containing loci are compared to the original UM2, and to the two 15 bp motifs located from the tRNA set. The latter two are labelled "box A" and "box B" to denote that they cover the tRNA box A and B promoter motifs. (The actual box A and B motifs correspond to bp 2-11 in "Box A" and bp 4-15 in "Box B" [3].)

The similarity between the tRNA box A and box B and the UM2 FB and TB is striking (fig. 1). It thus seems likely that UM2 corresponds to pseudo-tRNA genes located in front of, and serving as promoters for, snoRNA (and other ncRNAs) genes. A similar arranged of ncRNA genes has been observed in *Arabidopsis*, where a dicistronic primary transcript consisting of an tRNA<sup>Gly</sup> and a snoRNA is cleaved by the tRNA 3' end-processing enzyme RNA Z, releasing the snoRNA from the tRNA [4]. If a similar arrangement of tRNA and snoRNA genes also exists in *C. elegans*, this could possibly be a very old evolutionary solution to the transcription of snoRNAs genes, dating back to before the divergence of plants and animals. We have, however, no indication of the existence of such a dicistronic primary transcript in our data. Though this may very well be because our experimental protocol was not design to pick up a possibly internal tRNA promoter has been transformed to act as a (non-transcribed) upstream core promoter, perhaps utilising a TFIIIC-like transcription factor for recruitment of TFIIIB and polymerase III.

### **Discovery of ncRNA internal motifs**

For the internal motif discovery, the input sequence set was all detected ncRNA transcripts, with the exception that for each family (consisting of nearly identical transcripts), one sequence was

chosen to represent the entire family. The results produced three conserved motifs (tab. 2), of which two (Internal Motif 1 (IM1) and IM2) were found at the 5' and 3' ends of 9 transcripts, and the third (IM3) found in another set of 8 transcripts.

*Table 3. Statistics summary for the internal motif search. (See tab. 1 for explanations).* 

| <u>Motif</u> | E value               | bits | width | sites | llr |
|--------------|-----------------------|------|-------|-------|-----|
| IM1          | $1.2 \times 10^{-19}$ | 38.4 | 23    | 7     | 186 |
| IM2          | $1.0 \times 10^{-20}$ | 38.9 | 28    | 8     | 216 |
| IM3          | $1.8 \times 10^{-37}$ | 40.2 | 37    | 12    | 334 |

Bailey, T.L. and C. Elkan, *Fitting a mixture model by expectation maximization to discover motifs in biopolymers*. Proceedings of the Second International Conference on Intelligent Systems for Molecular Biology, 1994: p. 28-36.

- Harris, T.W., et al., *WormBase: a cross-species database for comparative genomics*. Nucl. Acids Res., 2003. **31**(1): p. 133-137. Release W130, Oct. 2004.
- 3. Ciliberto, G., et al., *Promoter of a Eukaryotic tRNAPro Gene is Composed of Three Noncontiguous Regions.* PNAS, 1982. **79**(4): p. 1195-1199.
- 4. Kruszka, K., et al., *Plant dicistronic tRNA-snoRNA genes: a new mode of expression of the small nucleolar RNAs processed by RNase Z.* EMBO J., 2003. **22**(3): p. 621-632.

# Supplementary document 5: *C. elegans* ncRNA biogenesis groups

Based on their upstream motif, genomic location, 5' end structure and 3' termini, as well as three conserved internal motifs, we suggest the 161 known and novel ncRNAs can be divided into least seven different groups with respect to biogenesis and function (Tab. S-1). The first five groups (I-A, I-B, II, III and IV) are predominantly determined by core promoter structure, and contain ncRNAs with both intronic and intergenic loci. The remaining two groups lack discernible upstream elements, and are grouped according to genomic location and other available information. Group V is made up entirely made up snoRNAs with intronic loci, whereas group VI mainly consists of a smaller number of ncRNAs with intergenic loci, and for which transcription systems is not immediately evident.

<u>Group I-A</u> includes 51 transcripts with a UM1 sequence upstream of their genomic loci. These ncRNAs appear all to carry a 5' methyl-guanosine cap, and include known RNA polymerase II transcripts like the U1, U4 and U5 snRNAs, along with 11 C/D snoRNAs and 17 novel ncRNAs of unknown function. The absence of TATA box (Hernandez 2001; McNamara-Schroeder et al. 2001), and the presences of 5' caps, strongly suggests this group is composed of unprocessed RNA polymerase II transcripts. The majority of UM1 loci were intergenic, however 26 intronic loci also had this upstream motif. A subset of 23 UM1 loci had an additional conserved upstream motif (UM1A) located directly upstream of UM1, at approximately -80 bp (Fig S-3).

Four groups (I-B, II, III and V-B) contain known or likely RNA polymerase III transcripts. These ncRNAs generally have a low frequency of capped transcript, and a high frequency of polymerase III terminator signals. Groups I-B, II and III loci contain upstream motifs UM1, UM2 and UM3, respectively. Loci in groups I-B and III all have a TATA box in addition to their upstream motifs. Group I-B includes U6 snRNA, which in our data showed strong indications of carrying a 5' end cap, probably implying that the  $\gamma$ -monomethyl-GTP cap found on human U6 snRNA (Gupta et al. 1990) is also post-transcriptionally added to *C. elegans* U6 snRNA.

Forty-seven ncRNAs make up <u>group II</u>, most of which (39) have snoRNA-like characteristics. All share the same Upstream Motif 2 (UM2) at their genomic loci. None could be assigned a 5' end cap with any certainty, and 87% of their loci have a canonical RNA polymerase III terminator sequence at their 3' termini, strongly indicating transcription by RNA polymerase III.

<u>Group III</u> ncRNAs are characterised by Upstream Motif 3 (UM3) at their genomic loci, and comprise the 9 sbRNAs. Their loci are, with one exception, all intergenic, and are

frequently found in small clusters of two and three. The loci invariantly contain a TATA box preceded by a conserved G residue. The presence of a TATA box, and the apparent lack of a 5' end cap on all but two of transcripts is indicative of RNA polymerase III transcription. <u>Group IV</u> is made up of four SRP RNAs most likely transcribed from both internal and upstream promoter elements. Their loci show an upstream TATA element and a tRNA type A-block, resembling the *Schizosaccharomyces pombe* type of SRP RNA promoter (Rodicker et al. 1999).

Group V are intronically located snoRNA-like genes with no apparent upstream motifs. These genes are most likely transcribed from the host gene promoter, and either excised from pre-mRNA or processed from intron lariats after splicing of the host mRNA (de Turris et al. 2004). More than 2/3 of group V snoRNAs are potential H/ACA snoRNAs, whereas a similar dominance of C/D snoRNAs are found in other biogenesis groups. The sequence separating the group IV ncRNA from the preceding exon is generally more AT-rich than any of the conserved upstream motifs. The average distance between the ncRNA 5' end and the preceding exon is also only 44 nt, far less than for intronic group A (373 nt) and C loci (204 nt), and hardly sufficient to accommodate for a eukaryotic core promoter (Tab. S-1). More than 60% of the loci reside in ribosomal or other translational related genes, known in vertebrates to have the TOP type promoter, important for regulating the rate of mRNA to snoRNA synthesis in genes hosting intronic snoRNAs (de Turris et al. 2004). None appeared likely to carry a 5' end cap. Relating the expression levels of group V snoRNAs with the frequencies of EST corresponding to exons of their host genes produced a distinct positive correlation not found for intronic ncRNAs in group II (Fig. 4 in text). On the other hand, relating the expression profiles of the group V snoRNAs to the expression profiles of their host genes, produced strong negative correlations the developmental timing of expression of most snoRNAs relative to their respective host gene mRNAs, suggesting that the balance between processing of the host pre-mRNA transcripts to mature, spliced mRNAs or direct excision of the intronic snoRNAs may also be under regulation (de Turris et al. 2004). A further indication in this direction is that many intronic group V snoRNA-like transcript showed substantial variation in expression through development, with particularly high expression in the dauer state. Whereas we cannot exclude the possibility that the high dauer expression levels could be an artefact of the experimental procedure (e.g. due to a reduced rRNA fraction in RNA extracts from dauer worms), the fact the none of the five constitutively expressed spliceosomal snRNAs displayed altered expression in dauer worms indicates that the data reflects physiologically relevant levels of these ncRNAs. Thus, the elevated expression levels of the ncRNAs in the dauer state may represent altered activation of their host genes, or differential processing of pre-mRNAs to snoRNAs rather than to mRNAs (de Turris et al. 2004).

<u>Group VI</u> is composed of ncRNAs with intergenic loci for which no discernible upstream motifs could be found. The group comprises six SL2 RNAs and two snlRNAs

(probably transcribed by RNA polymerase II), and two C/D snoRNA-like RNAs for which no transcription system is suggested.

## Supplementary table 1

## Tab. S-1. ncRNA biogenesis groups.

| Group | No. of<br>ncRN<br>As | Upstream<br>motif(s)<br>(position) | Capped<br>ncRNAs <sup>*</sup><br>(%) | Pol-III<br>terminato<br>r <sup>\$</sup> (%) | Intronic/<br>intergenic<br>loci | Distance to<br>5 exon <sup>!</sup><br>(bp) | TR host<br>genes <sup>&amp;</sup><br>(%) | Suggested<br>RNA<br>polymerase | Remarks /Known<br>ncRNA classes                 |
|-------|----------------------|------------------------------------|--------------------------------------|---------------------------------------------|---------------------------------|--------------------------------------------|------------------------------------------|--------------------------------|-------------------------------------------------|
| I-A   | 51                   | UM1 (-81)                          | 84                                   | 13                                          | 20 / 51                         | 287                                        | 26                                       | II                             | U1/2/4/5 snRNAs, SL<br>RNAs, C/D box<br>snoRNAs |
| I-B   | 4                    | UM1 (-89)<br>+TATA                 | 25                                   | 100                                         | 8 / 12                          | 672                                        | 20                                       | III (II?)                      | RNase P RNA, Y RNA,<br>U6 snRNA                 |
| II    | 47                   | UM2                                | 2                                    | 87                                          | 22 / 26                         | 204                                        | 15                                       | III                            | SnoRNAs                                         |
| III   | 9                    | UM3<br>+TATA                       | 11                                   | 78                                          | 1 / 8                           | -                                          | -                                        | III                            | Novel ncRNAs with IM1 and IM2                   |
| IV    | 4                    | TATA +<br>int. box A               | 0                                    | 100                                         | 1/3                             | 304                                        | 0                                        | III                            | All SRP RNAs                                    |
| V     | 36                   | None                               | 0                                    | 31                                          | 36 / 0                          | 39                                         | 69                                       | $P^{\#}$                       | All are snoRNAs                                 |
| VI    | 10                   | None                               | 80                                   | 10                                          | 0 / 10                          | -                                          | -                                        | Undecided                      | SL RNAs, 2 snoRNAs                              |

\* ncRNAs with more than 95% possibility of being capped.

<sup>&</sup> TR host genes – Translationally related host genes.

<sup>#</sup> P – Processed from pre-mRNA or intron lariats rather than independantly transcribed.

<sup>s</sup> A stretch of at least four consequtive Ts at +/- 10 bp of the 3' terminus of ncRNA transcript.

<sup>1</sup> Apply only to intronic ncRNA members of each group.

The group I-A, I-B, II and III ncRNAs were clustered according to their respective upstream motifs, and group I-A and I-B were further subdivided according to UM1 position and TATA box. Group IV are SRP RNAs which transcribed from SRP specific transcription promotor. Group V are transcripts with intronic loci without distinct upstream motifs. Group VI all have intergenic loci with no distinct upstream motif.

## Supplementary document 6: Estimates of the C. elegans small

## non-coding RNA number

### 1. Estimate based on intron conservation

Based on the observation that the conservation level of ncRNAs is different from (non-protein coding) non-ncRNA sequences, we used the WABA algorithm[1] to compare the sequence conservation of ncRNA containing introns in *C. elegans* and *C. briggsae* to that of all introns (fig 1). The conservation level of each individual intron was calculated as "waba-strong sequence/total intron sequence", introns with no waba-strong sequence being set to zero.







Figure 1. Distribution of C.elegans introns conserved in C. briggsae. Upper: All introns. Middle: Introns not containing ncRNA loci. Lower: Introns containing ncRNA loci.

As most ncRNAs are longer than 50 bp, we initially took introns shorter than 50 bp to represent non-ncRNA containing introns. Assuming that the distribution of all (known and unknown) ncRNA-containing introns is similar to that of known ncRNA containing introns, we used linear regression analysis to estimate the (total) percentage of ncRNA containing introns in C. elegans, yielding a preliminary estimate of 4.1%. However, not knowing to what extent these short (< 60 bp) introns were representative for the longer non-ncRNA containing intron population, we repeated the procedure, taking introns within each 10 bp interval from 30 to 130 bp (no ncRNA-containing intron is shorter than 130 bp) as estimates of the non-ncRNAs intron population (fig. 2). As is evident from the figure, most intron intervals below 140 bp give estimates of 1.5-2.5%. A notable exception is the interval 40-50 bp, which gives a percentage twice that of the average of the remaining <140 bp intervals. Introns in this size interval are exceptionally many, close to 35.000, as opposed to 1-2000 for most other intervals (tab. 1). To avoid undue influence from the shortest fraction of the intron population, we therefore carried out separate calculations with introns below 50 bp either included or excluded.

### Table 1. Intron size distribution

| Intron size (bp) | No of introns |
|------------------|---------------|
| <30              | 42            |
| 30 - 40          | 300           |
| 40 - 50          | 34698         |
| 50 - 60          | 14213         |
| 60 - 70          | 3410          |
| 70 - 80          | 2397          |
| 80 - 90          | 1785          |
| 90 - 100         | 1493          |
| 100 - 110        | 1405          |
| 110 - 120        | 1295          |
| 120 - 130        | 1113          |
| 130 - 1000       | 33046         |
| 1000 - 2000      | 4643          |
| >2000            | 1482          |
| All introns      | 101322        |



Figure 2. Estimates of the percentage of ncRNA-containing intron when using introns within different length intervals as representative of non-ncRNA containing introns.

Of the 99 introns containing an ncRNA, 89 are shorter than 1000 bp. Moreover, our definition of conservation level is not appropriate for large introns (since the large introns may have a considerable amount of conserved sequence, but the calculated conservation level would still be low. We therefore let the 130 - 1000 bp intron set represent the total set (henceforth TOTAL set). Binning of the conservation level had strong influence on the result, however, the variations leveld out with increasingly large bins, and we therefore used 1/3 (33.33%) as bin size.

Using the linear regression method [2] to deduce the percentage of ncRNA containing introns in the TOTAL set. Let x be the conservation level, f(x) be the function of the conservation distribution of TOTAL set, f1(x) of ncRNA containing intron set, and f2(x)

of the non-ncRNA containing intron set.  $b_0$  is the percentage of ncRNA containing introns in the TOTAL set. We then get

$$f(x) = fI(x)b + f2(x)(1-b)$$

$$b_0 = \underset{b}{\operatorname{arg\,min}} (\mathbf{\hat{o}} [f(x) - fl(x)b + f2(x)(1 - b)]^2 dx)$$

We used three different intron set to represent non-ncRNA containing introns, SHORT (40-50 bp), LONG (50-130 bp) and ALL (SHORT + LONG), to calculate frequencies of ncRNA containing introns and estimates of the entire *C. elegans* small ncRNA population. Adjusting for the fraction of ncRNA loci in introns larger than 1000 bp (10 out of 99), the ncRNA/intronic loci-ratio (90/99), and the fraction of of non-intronic (eg. intergenic) ncRNAs, we obtained three estimates of the *C. elegans* small non-coding transcriptome (tab 2).

*Table 2. Estimates of small ncRNA number in the C. elegans genome. For definitions of SHORT, LONG, ALL, and TOTAL, see text.* 

| Non-ncRNA<br>intron set | % of<br>TOTAL | No of<br>ncRNA<br>introns<br>in<br>TOTAL | Total no<br>of<br>ncRNA<br>introns | No of<br>ncRNAs with<br>intronic loci | % of all<br>introns | No<br>ncRNAs in<br>genome |
|-------------------------|---------------|------------------------------------------|------------------------------------|---------------------------------------|---------------------|---------------------------|
| SHORT                   | 3.92%         | 2358                                     | 2623                               | 2385                                  | 2.4%                | 4062                      |
| LONG                    | 2.74%         | 905                                      | 1007                               | 916                                   | 0.9%                | 1560                      |
| ALL                     | 4.08%         | 1348                                     | 1500                               | 1363                                  | 1.3%                | 2322                      |
| All introns             |               |                                          |                                    | 1                                     | 01322               |                           |
| TOTAL (130- 1           | 000 bp)       |                                          |                                    | 3.                                    | 3046                |                           |
| Fraction of ncR         | NA containi   | ng introns in                            | 0.                                 | .90                                   |                     |                           |
| ncRNAs/loci             |               |                                          |                                    | 0.                                    | .91                 |                           |
| Fraction of inte        | rgenic ncRN   | As                                       | 0.                                 | .59                                   |                     |                           |

### 2. Estimate based on conserved upstream motifs

In order to obtain an estimate the ncRNA numbers in *C. elegans*, we attempted to count the number of occurrences of UM1-3 in the genome. To accomplish this we used the weight matrices computed by MEME [3] as input to the program mhmm (part of the Meta-MEME [4] software) in order to generate a Hidden Markov Model for each upstream motif. We then searched these HMM profiles in a *C. elegans* masked genome [5] using mhmmscan ( also part of Meta-MEME). We chose the E-value threshold as 0.1 because most (over 90%, or 129 out of 139) of our proved ncRNA upstream motifs could be identified under this threshold. 1404 genomic sites were reported as UM1 candidates, 527 as UM2 candidates, and 65 as UM3 candidates. Among these, we identified 75 out of 82 of our previously detected UM1 sequences, 39 of out 48 UM2, and 8 out of 9 UM3. (The parameters of Meta-MEME were as follows: mhmm -motif x -type star MemeResultFile; mhmmscan motifx.mhmm worm.masked.dna).

### UM1 candidates and a possible transcript repeat

We used a repeat masked genome for the search since mhmmscan tend to give tandem

repeat regions a high score in genome scale scans. We nevertheless found that a *C. elegans* repeat (Ce000293) contained UM1. During our cloning work, we once identified one clone which appeared to be a combination repeat Ce000293 and another repeat. However, as we only found this one clone, and were unable to determine transcript 5' and 3' with any certainty, it was not included in our set of verified novel ncRNAs. There are 314 Ce000293 repeats in *C. elegans* genome but these have not been included in our UM1 count, as the search was done on a repeat masked genome.

### Intronic and exonic UM hits

A fraction of each of the ncRNA loci having either of the three upstream motifs are found in introns of protein coding genes, whereas as only three are found overlapping exons in sense directions. Of these three, one (Cen59/UM2) is located entirely in the non-translated part of an UTR, whereas the two others (Cen4.2[snRNA U6]/UM1 and Cen42/UM2) covers parts of translated exons. Thus, the data suggests (as do common sense) that few genuine UM hits should be found covering exons, whereas as considerable fraction could be expected to co-located with introns. We therefore checked to what extent the genomic hits overlapped introns and exons of protein coding genes (tab 3). As seen from the table, "intronic hits" are within the limits of what would be expected with a reasonable error rate, but both UM2 and UM3 have unreasonably high percentages of hits in exons.

| Verified loci (%) |           |         | (             | Genomic hits |                  |
|-------------------|-----------|---------|---------------|--------------|------------------|
| <u>Motif</u>      | In intron | In exon | In intron (%) | In exon (%)  | Total no of hits |
| UM1               | 31.7      | 1.2     | 54.1          | 7.1          | 1404             |
| UM2               | 45.8      | 4.2     | 40.4          | 40.4         | 527              |
| UM3               | 11.1      | 0.0     | 30.8          | 33.4         | 65               |

Table 3. Distribution of verified loci and genomic hits for upstream motifs 1-3 (UM1-3).

### UM2 and tRNA

Among the 527 UM2 candidates, 254 are tRNA primary transcript according to the WormBase annotation. Additional searches with alternative software (in progress) also indicate a relatively high number (around 2000) of UM2-like sequences, of which about 50% overlap with either tRNA genes or pseudo-tRNA genes (see SM document on "Upstream Motifs at *C. elegans* noncoding RNA loci" for details).

Based on the above we conclude that the sets of UM2 and UM3 candidates are unlikely to yield a reliable estimate of the total ncRNA population in *C. elegans*. UM2 is found to overlap considerably with both tRNA and pseudo-tRNA loci (the fraction of

pseudo-tRNA loci being difficult to estimate), and the genomic hits have an unreasonably high tendency of falling within coding exons. UM3 candidates also show a high percentage of exonic locations, and the number of UM3 loci (verified and candidate) is so low that an estimate of the total ncRNA number would be heavily influence by any error in the UM3 candidate figure. Therefore, whereas we do believe that a number of the UM2 and UM3 candidate loci will eventually turn out be actual ncRNA loci, we do not think that the UM2 and UM3 hit numbers are suited for an estimate of the total number of ncRNAs in *C. elegans*.

An estimate based on UM1 seems more likely to give a reasonable reflection of the size of *C. elegans* ncRNA population. UM1 is well conserved and includes a very likely promoter element (the snRNA PSE). It is occurs rather frequently (at 82 of 198 verified ncRNA loci), and apart from one UM1 containing repeat, which is easily removed by repeat masking, we have not found any other confounding factors that might strongly bias an estimate. The genomic search also gave a low number of hits overlapping coding exons, indicating that the candidate UM1 hits mostly occur at probable genomic locations. We have therefore based an estimate of the size of the total ncRNA population in *C. elegans* on the frequency of UM1 hits in genome (tab 4).

Table 4. Estimates of ncRNA loci and number of different ncRNAs in the C. elegans genome based on the occurrence of upstream motifs UM1, UM2 and UM3. (Loci/ncRNA is calculated as all ncRNA loci corresponding to all ncRNAs detected by our screen, i.e. 198/161).

|          | No of<br>ncRNAs | No of<br>ncRNA<br>loci | % of<br>all<br>loci | Loci/<br>ncRNA | No of<br>genomic<br>hits<br>(E < 0.1) | Estimated<br>no of<br>ncRNA<br>loci | Estimated<br>no of<br>different<br>ncRNAs |
|----------|-----------------|------------------------|---------------------|----------------|---------------------------------------|-------------------------------------|-------------------------------------------|
| UM1      | 54              | 82                     | 41.4%               | 1.23           | 1404                                  | 3390                                | 2757                                      |
| Total no | o of loci       | 198                    |                     |                |                                       |                                     |                                           |

### 3. Estimate based on clone number and quantitative Northern blot data

The model relates to two kinds of data. One is the *number of library clones* found for a single ncRNA species The other is the *concentration* of each ncRNA as determined by quantitative Northern blots. The estimates are based on two assumptions:

- 1. For an ncRNA, the clone number is related to its concentration in the total RNA sample (i.e. the concentration of the ncRNA in *C. elegans*).
- 2. For ncRNAs of a given concentration (i.e. within a given concentration interval as estimated by Northern data), the clones numbers as obtained by multiple samplings, are normally distributed.



*Figure 3.* Dots distributions of ncRNA clones in relation to concentration (Y-axis: log Clone number, X-axis: log ncRNA concentration (Northern))

Concerning assumption 1: As shown in Figure 3, ncRNA showing higher concentrations in Northern tend to occur as several clones. At lower concentrations, ncRNAs are most likely to be picked randomly, and just one or very few clones have been sequenced.

Concerning assumption 2: Histograms displaying the distribution of total ncRNA clones are shown in figure 4 A. At the highest (log) concentration range [-0.7 to +0.1] (marked by red lines in figure 3), the distribution of ncRNA reads are similar to a normal distribution (Fig. 4B).



A. All ncRNAs

B. Conc. range -0.7 to 0.1

*Figure 4 A: Histogram distribution of all ncRNA clones. B: Histogram distribution of the ncRNA clone within the (log) concentration range -0.7 to 0.1. (Y-axis: Frequency; X-axis: Clone number)* 

If we take a log concentration of -0.5 as a "standard" level, we can, according to assumption 1, calculate the expected number of clones for all ncRNA at this standard level. Figure 5 shows the distribution of expected ncRNAs clones after this

normalisation. The normalisation yields a total of 5781 expected clones, with a mean frequency of 2 clones per ncRNA (fig. 5). As this represents a multinomial distribution [6], the number of different ncRNA species equals the number of samples (i.e. expected clones) divided by the mean frequency. Thus, the total number of ncRNA species in the *C. elegans* ncRNA population equals 5781 x 1/2 = 2936.



Figure 5. Distribution of -0.5 normalized ncRNA clones. Blue and purple bars represent reads with original concentrations lower and higher than the "standard" level, respectively.

### 4. Summary of the three estimates

The three different estimates all arrive at a number of different ncRNA in the lower thousands, with an average around 2700 (tab. 5). Most spread is found within model 1 (Intron conservation), however, even if all three sub-estimates of this model are taken into account, the average based on all three models falls between 2400 and 3300. Despite obvious inherent weaknesses of each individual model, we think that the fact that they all arrive at such similar figures suggest at an estimate of 2700 ncRNA species in *C. elegans* may not be too far off the mark.

| <u>Model</u>               |             | Estimated no of ncRNAs |
|----------------------------|-------------|------------------------|
| 1 Intron conservation      |             |                        |
| SHORT non-ncRNA set        | 4100        |                        |
| ALL non-ncRNA set          | 2385        | 2385                   |
| LONG non-ncRNA set         | 1600        |                        |
| 2. Conserved upstream mo   | otif (UM1)  | 2757                   |
| 3. Clone no. vs expression | level       | 2936                   |
| Average                    | (2431-3263) | 2693                   |

## Table 5. Estimates of the ncRNA transcriptome.

- Kent, W.J. and A.M. Zahler, *Conservation, regulation, synteny, and introns in a large-scale C. briggsae-C. elegans genomic alignment.* Genome Res, 2000. 10(8): p. 1115-25.
- 2. Venables, W.N. and D.M. Smith, *An Introduction to R*. 2002: Network Theory Ltd. 156.
- 3. Bailey, T.L. and C. Elkan, *Fitting a mixture model by expectation maximization to discover motifs in biopolymers*. Proceedings of the Second International Conference on Intelligent Systems for Molecular Biology, 1994: p. 28-36.
- 4. Grundy, W.N., et al., *Meta-MEME: motif-based hidden Markov models of protein families*. Comput Appl Biosci, 1997. **13**(4): p. 397-406.
- 5. Harris, T.W., et al., *WormBase: a cross-species database for comparative genomics*. Nucl. Acids Res., 2003. **31**(1): p. 133-137. Release W130, Oct. 2004.
- Billingsley, P., *Probability and Measure*. 3rd ed. 1995, New York: Wiley-Interscience. 608.

## Supplementary document 7: Oligo sequences used in this work

(<u>Underlineds</u>: RNA; *Italisc*: Restriction Endonuclease site; p.: 5' phosphate; -x: 3'-DMT.)

>5AD; 5' adaptor

GGAGUAGCAUGCGUGACGAAAA

>3AD; 3' adaptor

p.<u>UUUU</u>GACCAC*GAGCTC*ACAGGG-x

>5CD; 5' PCR primer

GGAGTA*GCATGC*GTGACGAAA

>3RT; 3' reverse transcption & PCR primer

CCCTGTGAGCTCGTGGTCAA

>5S-1pA; probe used for removal of 5S rRNA

AAAAAAAAAAAAAAAAAAAAAACGTCTCCGATCCAAGTACTAA

>5S-2pA; probe used for removal of 5S rRNA

>5.8S-1pA; probe used for removal of 5.8S rRNA

AAAAAAAAAAAAAAAAAAAAAAATTTCACCACTCTAAGCGTCTG

>18S-1pA5; probe used for removal of 18S rRNA

AAAAAAAAAAAAAAAAAAAAAAAAAGACCTGTTATCGCTCAATCTC

>18S-2pA; probe used for removal of 18S rRNA

AAAAAAAAAAAAAAAAAAAAAAACTACCTTGTTACGACTTTTACCC

>26S-1pA; probe used for removal of 26S rRNA

AAAAAAAAAAAAAAAAAAAAAATCCCTATTAGTGGGTGAACAA

### >CeN1-1 AY948555

### >CeN1-2 AY948556

aaacttacctggctgggggtatctcgtgatcatgaagacgggatccccatggtgaggcct acccattgcacttttgggcgggctgacctgtgtggcagtctcgagttgagattcgccaac agcttaatttttgcgtatcggggctgcgtgcgcgcgcgccctg

>CeN1-3 AY948557

>CeN1-5 AY948559

>CeN1-6 AY948560

>CeN1-7 AY948591

aaacttacctggctggggggctattttgcgatcaagaaggcagaatccccatggtgaggcc tacccattgcacttttgggcggggctgacctgtgtgggcagtctcgagttgagattcgccaa cagcttaatttttgcgtatcgggggctgcgtacgcgggccctga

>CeN2-1 AY948570

agctttgcgctgggggggataacgtgaccaatgaggctttgccgaggtgcgtttattgctg gttgaaaacttttcccaattgcccgcgatgtcccctgaaacatgggtggcatacgcaatt tttgaacgcctctaggaggcag

>CeN2-2 AY948571

agctttgcgctgggggggataacgtgaccaatgaggctttgccgaggtgcgtttattgctg gttgaaaacttttcccaattgcccgcgatgacctctgaaacatgggtgccatacgcaatt tttgaacgcctctaggaggcag

>CeN3-1 AY948573

caactctggttcctctgcatttaaccgtgaaaatctttcgccttttactaaagatttccg tgcaaaggagcatacattgagtattacttagaatttttggagccttctcgaaagagcaag gca

>CeN3-2 AY948574

aactctggttcctctgcatttaaccgtgaaaatctttcgccttttactaaagatttccgt gcaaaggagcatacattgagtattatatacaatttttggagtccccttgagaaagcggga ca

```
>CeN3-3 AY948575
caactctqqttcctctqcatttaaccqtqaaaatctttcqccttttactaaaqatttccq
tg caa agg ag cattta ctg ag tatta cat a caattt ttg g ag a ctccttg ag a a ag cg g g
tca
>CeN3-4 AY948576
a a ctctggttcctctgcattta a ccgtga a a a tctttcgcctttta cta a agatttccgt\\
gcaaaggagcatacattgagtattatatatatatttttggagtccccttgagaaagcggga
са
>CeN3-5 AY948577
aactctggttcctctgcatttaaccgtgaaaatctttcgccttttactaaagatttccgt
gcaaaggagcatacattgagcattatatacaattttttggagtcccctcgagagagcggga
са
>CeN3-6 AY948596
a a ctctggttcctctgcattta a ccgtga a a a tctttcgcctttta cta a a gatttccgt\\
gcaaaggagcatacattgagtattatacacaaattttggagtcccctcggaagagcggga
са
>CeN4 AY948578
{\tt gttcttccgagaacatatactaaaattggaacaatacagagaagattagcatggcccctg}
{\tt cgcaaggatgacacgcaaattcgtgaagcgttccaaattttt}
>CeN5 AY948686
ggcagtgatgatcacaaatccgtgtttctgacaagcgattgacgatagaaaaccggctga
gccaa
>CeN6 AY948579
ggttttaacccagttaaccaaggttagcatgtattccgaccattcgtaagagtgtgttga
ataacaataatttttggaacagcttcttcggggttatccgtcgaagc\\
>CeN7 AY948580
ggttttaacccagtttaaccaaggttagctgtcgtttcgatctctcgagagagtgtgtcg\\
aataaaaataatttttggaatcgcttcatcggggaatccgttgaagcaa
>CeN8-1 AY948581
ggtttatacccagttaaccaaggttagcattaagtttcgacctttccaagaatgtgttga
aatgcaaattaatttttggaaccgcttcttcggggaatccgttgaagcaa
>CeN8-2 AY948582
ggtttttacccagttaaccaaggttagcattaaatttcgacctttcgcaagaacgcgttg\\
aaatgcaaatcaatttttggaaccgcttcttcggggaatccgttgaggcaa
>CeN9 AY948642
ctcggttccaacctcatcttgaccttgaaactactttgaccgctcct
>CeN10 AY948604
gaggttggccggaagaagacggttgggagagacacaaaggcctgaaacatggcctacaca
actcccgggaaggtctgagagtaggcctttgatgagatctaggagatcttccattatcct\\
{\tt tatagaggagaggctgtagaagaagacgtttcccctgcgagggtttggaaacggcctcgg
ccagcaattctcgtgtaaatgctgagtgcgatcgtcataccaacacaattcagactagtc
ttcggccaacctt
```

>CeN11 AY948561

ggttttaaccagttaactaaggttaacattaatttcgaccattcgaaagattgtgttgaataacaataatttttqqaacaqtttcttcqqqqqatatccqatqaa >CeN12 AY948563 acggttttaacccagttaaccaaggttagcatggaattcgatcattcgcaagaatgtgtcgaaacacaaaattttggacaagcttcctcggggtatccgtgggagca >CeN13 AY948665 agtcaatgatgttttttcaagacgggaccgactggtgaatgatgcataaatgaaatgctg agact >CeN14 AY948666  ${\tt ctgcggtgacgatcaactcttacctactatgacaaaaacaatggttagacgttactcgta$ ctgtctgagcagt >CeN15 AY948667  ${\tt gtccgttgatgacaacatacatacaccattacgatctctgaagacttcgtgctgatcatg}$ tatccatgcaacaccaactgaggaca >CeN16-1 AY948564 ggttttaacccagttactcaaggtacgctggagttctgacctttcgaaagagagtgtcaa  $a \verb caactttaacttttggaaccgctctgctggggttatccggtagagca$ >CeN16-2 AY948565 ggttttaacccagttactcaaggtacgctggagttctgacctttcgaaagagagtgtcaa acaactttaatttttggaaaagcttcgctggggttatccggcgaagca >CeN16-3 AY948566 ggttttaacccagttactcaaggtacgctggagttctgacctttcgaaagagagtgtcaaacaactttaatttttggaactgctctactggggttatccggtagagca >CeN16-4 AY948567 acgactttaatttttggaaccgctctgctggggtcatccggtagagca >CeN17 AY948668 gaagaaattgccgctaagcggggtgaaattgaggcatttgtctgaggtga >CeN18 AY948568 atcgcttcttcggcttattagctaagatcaaagtgtagtattctgttcttatcgtattaac ${\tt ctacggtatacactcgaatgagtgtaataaaggttatatgatttttggaacctagggaag$ actcggggcttgctccgacttcccaagggtcgtcctggcgttgcactgctgccgggctcggcccag >CeN19 AY948569 ggttttaacccagttaccaaggtaattcggagtttcgatctttcgaaagagagtgtcgattgtgaacaatttttggaatagctcttccggggaatccggtcgggcaa >CeN20 AY948572  ${\tt tggtttaa} a a a c c c a g t t a c c a a g g t a t t c g g a g t t c t g a c c t t t c g a a a g a a g c g t c t$  ${\tt tttacaataaattttggattagttcagtcggggtttccggctgaacaa}$ >CeN21-1 AY948613  ${\tt cagtcttcagtatgggtcaatctctgatctgcaactgaatatgatgagttcgggcgatga$  ${\tt tcttctgtgattacatcgcacggcgaggtgggaacgcaatacccgcctgccagcccgatt}$ ctgaac

>CeN21-2 AY948614

cagtettcagtatgggtcaatetetgatetgcaactgaatatgatgagttcgggcgatga tettttgtgattaaategcacggcgagatgggaacgcaataceegtetggcageeegatt etgaac

>CeN22 AY948615

attgcagaccggtgatgaaactgttctaggaagtgccgtcttagaaacaatgattatgaa ttggacgctgaggtca

>CeN23-1 AY948616

atctaccttactcgaaaacccgcatatgaagaccactaaatgacgaatcctaataaccca atgggtttcattgcggatatgaggcatttgtctgagcgga

>CeN23-2 AY948617

catctaccttactcgaaataacccgtcgatgaagaccactaaatgacgaatcctaatagc ccaatgggtttcattgcggatatgaggcatttgtctgagcggg

>CeN24 AY948669

aagcaaatgacgaaatcgcacctcggcccgactccaaccctgggggcgaaatgagctttt taactcagatgctt

>CeN25-1 AY948618

cgatttcttataatacttcagggccttactaaagacccagtgtacaatttttgcagccct gtcttctgaggcagggg

>CeN25-2 AY948619

gctatttataaacgctctcagggccttgcaaaagacccagtgaacaatttttggagaacc ctgtcctttcgaggtcagggta

>CeN25-3 AY948620

ggtatgatataacactcagggccttacaaaagacccagtgaacaatttttgcaaaccctg tcctttcgaggtcagggt

>CeN25-4 AY948621

atataatatatcactgtcagggccttacaaaagacccagtgaacaatttttgcaaaccct gtcttcttgaaggcgggg

>CeN26-1 AY948590

cgagaccatactatacagaatcatttctgcagtatgtatctcgtaattcccatcaaattg gtagagatgccaactgcgatgaaagggagacgggcaggccgcgagcgtgaagcagtcctt tagggcttgatgaccgcacggagccaatgaattttggagccgtagtggcctgctcttctg agcagt

>CeN26-2 AY948588

cgagaccatactatacagaatcatttctgcagtatgtatctcgtaattcccatcaaattg gtagagatgccatccgcgatgagtgggagacggggcgagccgcgagcgtgaaacagttctt cggaacttgatgaccgcacggagccgatgaattttggagccgtagtggcttgctcttctg agcgga

>CeN26-3 AY948622

cgagaccatactatacagaatcatttctgcagtatgtatttcgtaattcccatcaaattg gtagagattccatccgcaatgagtgggagacggggcgagccgcgagcgtgaaacagttctt cggaacttgatgaccgcacggagccgatgaattttggagccgtagtggcttgctcttctg agcgga

>CeN26-4 AY948586

cgagaccatactatacagaatcatttctgcagtatgtatctcgtaattcccatcaaattg gtagagatgccaactgcgatgaaagggagacgggcaggtcgcgagcgtgaagcagtcctc taatgacttgatgaccgcacggagccaatgaattttggagccgtagtggcctgctcttct gagcagt

>CeN26-5 AY948589

cgagaccatactatacagaatcatttctgcagtatgtatctcgtaattcccatcatattg gtagagatgccaactgcgatgaaagggagacgggcaggccgcgagcgtgaaacagtcctt tgaggacttgatgaccgcatggagccaatgaattttggagccgtagtggcctgctcttct gagcagt

>CeN27 AY948670

cacttgttacatccaatgatgagagtttgcgactagggcggtcttacacaatcatggtga ttctagtcattctgatggta

>CeN28 AY948623

cacgtctggtgaggatgaaaacaggacaggtttcgctaaaatattaccgaatgccaatat gtcgagacaccttggctgtctgaggacg

>CeN29 AY948624

acccgtgatgaagaaattagatccaactcccaggccagttgatacgtcttctggttcatg cagataaaggcgaacgaacggg

>CeN30 AY948671

ggctgtgacgattactattcccaacgcttggaatgaaccaaagtgattattaaccaatcc ttttctgagccaa

>CeN31 AY948625

gttaattcattaacttccaaggccttacacaagacctagtggacaatttttggagaccct atctagccgtgatagggtg

>CeN32 AY948626

gttaaaccataactaactcagggccttgttaaagacccgaagtacaatttttgaagccct gtctctcgaggcagggg

>CeN33 AY948672

caagcctcctggcgctgctattagccgggattcataggctggcgatgattgagattgttc ccacacgcaatttctcctgatccacatgaaggctaaacttccttggacgtctgagccgc >CeN34 AY948627

gcatgacggcaaggcgagtactcgcagccacgaaacgttccctgttgagcgcgctaactg tgagcgaaagtccctggaccactggcagaaagtgtcaccctctaggttgggtactctttg gagttttagtcatagcacagagacgctccttagaacagcatagggcctactctgatcgtc atgctt

>CeN35 AY948628

aaggcccgtgaagacacgaattaccgtctgataactaatgacgctaccatggctgtaaac cagaggccga

>CeN36-1 AY948673

catcgctctccagctccatgccgatgtaaaaaagtcagtgtggcgttttcatgagcggaa attatcactgttccaaaaaacaattgctagtctcctgtgagctaatgatcacctgatggt tcagacactt

>CeN36-2 AY948674

atcgctctccagctccatgcagacgtgaaaaagtcggtgtggcgttttcatgagcggaaa

ttaacattgttccaaaaaacaattgctagtctcctgtgagctaatgatcacctgatggtt caaacactt

>CeN37 AY948629

ctgcatctatgtgtactcgctcgtcgtaaatcgacaagtgtagaagggaaatgatgcgaa attggccgtgaactccgcaggcggacgaggactttatggttcctgtcctagtcaattgga gttcctcattt

>CeN38 AY948675

acgcgtcattttcatccaattggcaacgtgattctaatgttggcgattcagcgtatttct gacgcaaaattgataacttctccattgacgtctagtcagactaaactggctcggatacaa ttagggagtttacactt

>CeN39 AY948676

atggcggataggaaccaggtcatgtttgtacgtgatttgggccgacatccccgccgaaat agtcctgcgaagatctaaggtcgcttctggatggatttgccaccgggtgcacaccatctt cgtgcacaatt

>CeN40 AY948677

cagcggtgatcgatgacttgtgcagtggccgaggcgatcggattgtgatgtcgcctgaaa aggcgggacccaacgtcgcgcctttcgccagaagatggaaatatgcgcaacgtctgagct ga

>CeN41 AY948678

atgcaccttgcactctacgcctttcctttcaatgggttggtatgatttaataaggatgca agagaatagtacgggaagttcgaagacttgcggatttgcttccacggctccgcgagttca taactgtcaccacaatt

>CeN42 AY948679

attccttcttatcctgcactcagtttgttcattgactgtggagcctggaaatggaggaga aagtaaatttgatgattactaatacttcgctgtctttagaggacgcggagattgtgagac ttgaaacattt

>CeN43 AY948680

tgcccggtctttgccccggatcaactttaatagttatgacggtttccgactcgggaaaat agattcttgcataacgacggaaatttcagagtttgttctgaatgtctccagtcgatgtgc aatacaatt

>CeN44 AY948681

cgacaatgataggataacctagagtctctgaaccatttcgtgtttgcaaaaacaatgctc cttgtctgagtcag

>CeN45 AY948682

gtggggcacagagttgcagttgattgaaactaaatcatgtgcgctaagttgtcccgaaag tatctttggatttctacaaaacagtgttccttctttaggatgctgatccgtagagatctg aacaaat

>CeN46 AY948683

>CeN47 AY948630

acgtaaatgaagaaataccatccttgctctgcgagtcgttgagcaatcacttgagaactc tgatgaggtattgtagcatcgggttacggtagccgagtcagttgattctcatcatgtggc acttcgacggtgaacagttatggcctctgatacgt

>CeN48 AY948684

atgcacacagaaagtcgagattgccggcttcaaaggctttatcgttgattacgtgtgcta taacaacgccataggtatcattcttcgtcttcttaggcgcggaacatctaaatatggcta cattt

>CeN49 AY948685

accgcctctctaccaaacacttgcaagttctgtttattgcaagtgcatggaagaggcgaa tagaaaacggaatgatgtccactccttcgattatcgttcattggattgcgggcactttac ctcgttcgacattt

>CeN50-1 AY948631

ctgtgtatgacgacaacgtgttagggacatctgcaccaaccgtgaagatttaacgaaagt agtactgacacag

>CeN50-2 AY948632

gtgtatgacgacaacatgttagggacatctgcacaaaccgtgaagatttaacgaaagtag tactgacacag

>CeN51 AY948687

caccgcgtgagtactggctgtttgtgtctccgccattgccaatcagctgtcattaaccac gcaataccgtacagaggtgctaaattaccgtgaaaaccactttaaaaattggtcactcgg aggaggcacctcaacattt

>CeN52 AY948633

ccgcctccatgttccttaatttgtgagagcctgtcgttcactgacactttctccatggaa cgggaaggcatatcacccaaagtcaccattcatagttcacatcattgcctaacgagtgat gtgtctccgccaggtgtctcattt

>CeN53 AY948688

tggcaatgatcgaattatcattgagccaatccttttctgaattctgtgaggatgtaaatg ataggtctgagcca

>CeN54 AY948689

gtttgtgatgactgcatacggatcactgggctctgaatctctatgaaccgataatatccg ttctgata

>CeN55 AY948585 AY948594

cccgcgcctagaaactcagcggtgttttgtctttatgatcatgagctggtagcaggtgca atattgattcggagtcttaccggcgtccaccttctgaagggtgtgcgttaaaagttcatc cgaacaatt

>CeN56 AY948634

ttccccgtgattacaaacattgctgaaacctgcccacccgaaagcttcgagattggcgtg ggggccgatcgaggaaaagctgacaacggtgggaaccatgatacagattatgagagatga gqqat

>CeN57 AY948690

tccacatgatgatacaaccatagcatgagctggcagcagtgatcgctaaatgtcatagtt acacagatgggt

>CeN58 AY948691

ctgcgtctctccaacccggacaactcgcaacttgttgcaatggtcagttcgactgttaga gacgctaaataagaaaattggcggattcgctaacgtcgcgtcccatgaccggagtttgaa agtaggccgctgaacaatt >CeN59 AY948692 cacggccagtttgagttgattcgctctttcgcaatagagctttgagtcaaattactgtcc ggaaattatagagatgaagctcatttggagcaataacaattgttgaagctccgaaaatga tgctcttcccacaatt >CeN60 AY948693 acgccacgtgatttaggtttatttgctactcttgattaactctcatgatgacaagaaagt atgatggc >CeN61 AY948694 ccgtcgatgacgaccaagagttatccctgtctgaatgattgtgaggacaaaagactatgg taacactccgagacta >CeN62 AY948695 gtgcgatgaaggttaatgataagtttcggctgactcaaattgatgacacctttaatatgctgagcact >CeN63 AY948696  ${\tt gttgtcagtgacgatattacttaccgccccaggcatagtgtttgtgatgattggtttatt}$ ccgagactt >CeN64 AY948599  $\verb|ccccgcttcatggtgcattacactttgtaacttgcattgtgtgcgcgactaatgaagcaa||$  ${\tt taccaatatctgcagtatctgctcattcgccgtgttgtagttgatgagctcgtagtccga$ taacaatt >CeN65 AY948697 aagcgatgacgattgatatctgctctaatgagtctgaattaccatgttgagatcttgtct gagct >CeN66 AY948584 acgcacgcttatttcgcgccgcaagttttgcaatgacgatgtggctaaagtgtagtgcaa ${\tt tatgagctcgctcacggcgttgcggaccatagtctgaacacggttcgcgtttatgtgagt$ gaaacaatt >CeN67 AY948698 gcccccattatctttccatcaaatgatttaggacgtcattgatggcttagaatggggaaaattgaatcggtagaatgtgatttgtgagttgttcactgacacgtggcaactcgtattcgctacttcctacattt >CeN68 AY948699  ${\tt gtgccggatttaaacacttctgagttgctcacatgctcagaagaacaaggttcggaaaat$  ${\tt tagtgatcatttgatgtgctgaactccaaagagtcaaaactgagttggtgatcgtacatt}$ t >CeN69 AY948700 gacaggatgatgagtcactcgctgagtgacaataagccgagtgttagcggtttttatgta >CeN70 AY948701 gcgcgatgaactctttaccatctttcggggcataacactcttgatgataacatacccatttgctgagcgct >CeN71 AY948635 gaattcctgcggtccggatcgtatgggttatcaattctcaaccaccccatacgaactaacttgactaccggaatt

>CeN72 AY948636

catcatcggtccggtgttgatgggttattatcctgtggtgcttgtcgtcgctgatcacat tcaccgtcctctacacatcatcacaaatttgaccgatgtt >CeN73-1 AY948637

cacatcggtccggagttgatgggttaccagattaattcttctgcttgcaggagagcccgg tgtccttgtgatgccaaacccgtgttcctaacagaatacaaccccttcccatcgacacca acttgaccgttgtt

>CeN73-2 AY948638

cacatcggtccggagttgatgggttacccagtcattcttctgcttgcaggagagcccggt gtccttgtgatgccaaacccgtgttcctaacagaatacaaacccttcccatcgacaccaa cttgaccgttgt

>CeN74-1 AY948639

gtctcggtccggcgtcagtgggttatcgtatttctctcccttcggggaatttcccatcgg catcaacttgaccgttgcgt

>CeN74-2 AY948640

gtatcggtccggcgtcagtgggttatcaagtttgcctcccttcgggaatttctcatcggc accaacttgaccgttgct

>CeN75 AY948593

aatacggtccggagtcggtgggttatctgagaagccccccatcgacaccaacttgaccga tgaaaattttagtttttaaa

>CeN76 AY948641

cagacaggcgtggtccggagtcggtgggttacctttgaaaccccccctcccatcggcacc aacttgaccgttcctgtt

>CeN77 AY948602

caattcggtccggagtcaatgggttatctttcaaaaccccccattgacaacaacttgacc ggcgt

>CeN78 AY948598

ttagcatgctgttagagcttgtaaggtatatgtgattttacgagtgttgaagtattgcaa aagcaaaggacgggcacaattgccatgtgttggtattattgcttcaagttatttgaagct gtaatatcaataagcatgtctcgtgtgaagtccgacaatt

>CeN79 AY948702

ttgcattgaaaagggacgggctatctttatggattgtttcgtataattttgatgcgagat aatagagaggcgcactgttactcttcatcactttttctgtgaacggagagtgtcaagcgc ttcccacaatt

>CeN80 AY948703

cagcatcgaaaatggacggactttcccgatggatcgtttcgtataattttggtgcaaaat agtagagagacgcagtgttactcttccttacgttacctgtatctggagagtgtcaagcgt ttcccacattt

>CeN81 AY948704

gtcgaagagtagtcatttgtatacgtgatacacttatacagagttacacttttcgtatat aagtgcttcttctcgttggagttgtttatttaatgagcaattacctctaaactgaaagca acaatt

>CeN82 AY948705

acgctcttcaaaagcactggttatcggactcagacttgtccatgccagccgtcaaaatga

gcaatatgaaatatcctgtttttgggtgaggtgtaactgtatttagattagatctcaata acacgatgacagtt

>CeN83 AY948706

ttccacactccttaagctagtttgactgtgattgtgcattttagatcgcttcatgagttc gctgcgttttgctgtgaattcattgttgccctaatttgtatagtcatgggtgtcaaattg gcgagttacgtgtggtaaatggatgacgatcaaattttgttctgtgaactttgccgtaga tgtgatgctgtttgtttatagattgataatgattgtcgaacaatt

>CeN84 AY948707

ttgcctcagtgtctgggcaaagcagactgtttttaatagtactgacttaatccactgatg gctatagaaaaacattgtgtaatccccgaacaccttgtggtgtattggattcatgacatt gtgacaatt

>CeN85 AY948597 AY948600

acgcacaacttaagaacttgcgaaatctacacattcttggctcttcttagctgcgttttg cagttcagattctgccaagttttgtgttcatggttacgcgagtgtcatatttgtgctata taaaaaatcgtctcacagtaaattataatagttagagtatctaaagtcgcgctaaggccc cgatattctatttttcctggtgtgaacgatgacattt

>CeN86 AY948708

ctgcaactattcaagagatttgcctcccgtggggcacgccttttttcgttgcgaaataaa acatgtcctttattcccgctcctggattgtgtttcttgcgcgatgatatggctatgacaa tt

>CeN87 AY948709

>CeN88 AY948710

tttctctcgtcttggcgcttccactggtgaatgtggttgtgtatgttacgagagacaaag tagcgcctaacggctttcggatctccttcggtgtttgtcttgaatttcgacaaatgtcat cctctgggttcgagacaatt

>CeN89 AY948711

gcgcgatgaggattgataacacatacacactctgaagttatgtgaagagataattgaa gaacggatatctgagcgc

>CeN90 AY948712

atgcagatgtccattacgaaaaggctctttaccttttgacgtttagttaaatttgcgaaa taaaattgatgtctcgaagacatgtgcttcatattttgatgctcatgttcaagatcagca aacaaac

>CeN91 AY948713

>CeN92 AY948714

ttgcacctaccaattatatcggaagattttgaagtcatagttttcctatcgtagtgtgca ataaaaaccgttctactgccacacgggtactggccttgaagctgtatcggttccaaagtt gttcgaacaatt

>CeN93 AY948715

tttccattaagtagtcccgtacgttgaaattttcacgtacggtttggacaatatggagaa atgaatgttactctttttgcaatgacgctgaaacatattttcgctttgttagccataagt ttaaaacaatt

>CeN94 AY948716

caagcagttctccaacagaaatatgtgcatgaagtgatggtttgggtaaccatttcatct tttcatgtcatatatctcctgcctctcacggtttcatctgtgagaagcttcaaagaactg caatagaagtctagctcgagatgcgtgtgccggtttgcttttaatgcaatatggttcctt ttctcctcgggacagtt

>CeN95 AY948717

cgctcctatcttggcgcttccattggtgaatatggctgtgtatgttataggagagatagt agtgccttttggctttcggatctccttcggtgtttgtcttgcatctcgacaaatgtcatc ctctgggttcgagacaatt

>CeN96 AY948718

ctcgacatgtgactagcgatcctcttcggggttgattgcttttcttagtggagcatcggg ggctttctgtaaagttgactccgatccaccttgtcgtataccaacagtctgtgtggccct ctaccgctatttgagatgcccgggctggattgcatattccttatccttccgtagatccta tgggtccgtgacggttaggacaaaccatgcaaattacaaat

>CeN97 AY948592 AY948603

ttccactgcgaagtcagcagactagtcaatcgattagtaggcgttacagtggtggaatat caagatttatgtacaccgtctttgcttgaaacagtttttgttttgctttgttcggaacg tttttcatgggactgagagttggaaatttagcactggtcgtttacagggttgtcctgcag tcaattctaagttaccttagtttatgtcccacacattt

>CeN98 AY948643

gtgctgtgaagagaacgtgccactgtactttgcccatcggaagggcattgaaatggagat atacctggcacaggggccatctgagcactttttttt

>CeN99 AY948719

gttccacttatttttcaacgtcgccggttctagaatcgatgtgaccccaataagctggta gataagttgttactctgccacacgtgtactggtatcatgctgtatgtgttccaaagattt tacaaacaatt

>CeN100 AY948644

aaacgaggtccagagtcaccttttcagcaaaatgcagttagggtgctaggatttctcgaa aatgaaattggtcgtattatgcaagtagggcttgcttttgcgctccccgacttcacctca ttcccaaacatt

>CeN101 AY948645

aacctctcttataagccggggggactagcattttgttaagttcactagtaaaatgagaggt aaagcatagagacaaccagacaccgagaatgttttgatgttttcggtcactttgtgtgtc ccacaaat

>CeN102 AY948646

tatccatgtttactactacttttcatctctttttcactgaaatgtcgagtatttttgcga tgcatggtaaagaaatcaaggtgaccaggtttcttttcaattttcccccataattgaaga gttacaatgccatctgacaagg

>CeN103 AY948605

taccccatgatgtatcaatttagctaattgtgagctacttcgctctcgagattttgtctt gaagtgtgagtcgtattgaacgaactttgtcgaagctgatctgagggag

#### >CeN104 AY948647

ctgcaatgttctcagtgcatcctttggttctccgagccgaaagaagtcactagctgaaaa agagtttatactctgatcacacagtaacattgcaataaaagcttagctcgagatgcgtgt gccgttctgcttttaatgcgatctggttccttttctcctcgggacaatt

>CeN105 AY948648

gattgtcgtgaatcttgatcggcgtgtttattttacccgcgttgattgtaaaggccgaca tatatcaaaatttgacattaatgctggaagtttctgaaatagttccatttttcttccaat tatttcaaatgtcaaacaaac

>CeN106 AY948649

cgatgatgatgaagaatttttgatatggtgtcaggacctctgagagttccgtgatgatgt ttagagttcctgaatctt

>CeN107-1 AY948606

caccgagcgtcgtggcggggcgcttgtgagtcagcttcttgacggtagataagtgtggatg gagtgagaggaggagtcctgtgtatgtcgttgtctacgtcgaccgagcgtccgtgccaag cgctacgtcaccagggggataactgtcggaaggcggttagtcccggggtgcataaggagtcg tggatggttcaggaccgaaaggtagcagacaaaagcgaccgcgtggtgcagtggccggac cgcgcttgtgagttgacacacatacgcagccttctcgataccttcagaccacttatcatt >CeN107-2 AY948607

caccgagcgtcgtggcggggggcgcttgtgagtcagcttcttgacggtagataagtgtggatg
gagtgagaggaggagtcctgtgtatgtcgtcgtctacgtcgaccgagcgtccgtgccaag
cgctacgtcaccagggggataactgtcggaaggcggttagtcccgggtgcataaggagtcg
tggatggttcaggaccgaaaggtagcagacaaaagcgaccgcgtggtgcagtggccggac
cgcgcttgtaagttgacacacatacacagccttctcgataccttcagaccacttatcatt
>CeN107-3 AY948608

caccgagcgtcgtggcggggcgcttgtgagtcagcttcttgacggtagatgagtgtggatg gagtgagaggaggagtcctgtgtatgtcgttgtcaacgtcgaccgagcgtccgtgccaag cgctgcgtcaccagggggatgactgtcggaagatggtcagtcccggggtgcataaggagtgg tggatggttcaggaccgaaaggtagcagacaaaagccaccgcgggtgcagtggccggac agcgcttgtgagttgacacgtatacacagccttctcaataccttcagaccacttgtcac >CeN107-4 AY948609

caccgagcgtcgtggcggggggcgcttgtgagtcagcttcttgacggtagataagtgtggatg gagtgagaggaggagtcctgtgtatgtcgttgtcaacgtcgaccgagcgtccgtgccaag cgctgcgtcaccagggggatgactgtcggaagatggtcagtcccgggtgcataaggagtgg tggatggttcaggaccgaaaggtagcagacaaaagccaccgcgggtgcagtggccggac tgcgcttgtgagttgacacgtatacacagccttctcaataccttcagaccttcagaccac ttatcatt

>CeN108 AY948650

gtgcgatgaatgacttggataagtttcggctgaaacttggtgatgccaactttttaaaac tgctgagcac

>CeN109 AY948651

gcgcaatgaatgtttaaccatctttcggctgaatccatgatgccaattttcaaaatactg agcgcat

>CeN110 AY948652

gagcagatgtccattacgcgaatgcctgtgcttttcgacgtttagtttagtctgcaagat

agaattgatgtctcgaagacaggtacatcagcttttagagttcctgttcaagatcagcaaacaaac >CeN111 AY948653 aagcagtgatgattttatagttcagcttatcttcggatttgatgagaaatttcgcccctatcagagcttt >CeN112 AY948610 caatcctaaacttaaataacaaaaaacccaaagcctaactcaggacttggtaacaatttt tggagaccctaacttttattagttagggtg >CeN113 AY948654  ${\tt tggctaatgatgttctctgcgaaatacacaacttactacaaactgatcttatttgaattg}$ agggttactgtagctactgtagctaccgtaatcctcacagtgtgaacttaaattaaa gactgaagctt >CeN114 AY948655 gtgcaaggatgaaaaagaactctctcactgatagatgatgtcttcctacattatcagagc act >CeN115 AY948611 cagttctccaagacggacgtgttcgagtttcgtgctacggcacgtctctcggagagcgtctttaaattttggaaaagggtcccaatagggacccgg >CeN116 AY948562 cggtttaattacccaagtttgaggtaaacattgaaactgacccaaagaaatttggcgttagctataaattttggaacgtctcctctcgggggggagacaaa >CeN117 AY948656 agacagaggagttgatgagaactctaatccattctctgagcgagaaggatggccgaagcgggttcgcatttgaggcattaaggtagacgacagagttcttctggaaactactgcctcgcgctgacgtcatgccttcgcgggctgaattttgggtctgatcctc >CeN118 AY948657 aatcggtgatgtgatatccagttctgctactgagttattgtgaagattaactttccccgt ctgagatt >CeN119 AY948658  ${\tt catgtcaatgatgtctaaaaaattactacgatttaattcgaattgctgtgagatcaatct}$ tatacaattctgagacac >CeN120 AY948659 tcactatcgctgaggctt >CeN121 AY948660 cggctgtgatgatttcctattgccgtttacccgtctgaggaaaaccgtgcttgatacaac ttggaaaaggctgagccga >CeN122 AY948661  ${\tt cgggaatgatgaccttctgtgtaggaatctcaatgagtgactgtgacataaaaatgcagt}$ aaattcactgacccc >CeN123 AY948662 acgtgaagctgagatc

### >CeN124 AY948663

cgagcggtgatgaatgcacgtattgctctgacacctcttatgttagcggtaaatttccgt gccgcgatgagtccactaggatctctgagctc

>CeN125 AY948601

ctcacccacggcaacaaattccaattgtgtgtaacattcaatgcaattgagccgacgccg tgggaaatcactttcgtggaaccatttgatcccacgctcgttactgttaatgattgtggt ttgcacgtggtttacaat

>CeN126 AY948664

aagcagtcgttcagtggcgcaagcgattttcccatgcgcttgtgcctaatctttgactgc gagataaaaatgtcagagtcaagcggtccgctatctgtgtagcattctgttcaagatttg actgatattt

>CeN127 AY948595

ccgaagtgcgatatccagacagaactttaagagtactgcttggactgagtttactaactt cgaatatgaaatagttgatcgataaccggaatatactcaaaaaaaggtgtgctccgga caaaaatcaactaacaaaa

>CeN128 AY948583 AY948587

>CeN129 AY948612

cctcgatgacgattcacctagctcactcagacatacaactggtgataaaaaaatttcgtg tcttagagac

| sort  | CeN     | Class                     | State         | comment   | size       | reads    | сар      | Group    | UM     | Conservin      | tronic |
|-------|---------|---------------------------|---------------|-----------|------------|----------|----------|----------|--------|----------------|--------|
| 1.1 ( | CeN1-1  | snRNA U1                  | Known         |           | 164        | 97       | 1        | I-A      | 1      | 92.68          | Y      |
| 1.2 ( | CeN1-2  | snRNA U1                  | Known         |           | 162        | 31       | 1        | I-A      | 1      | 93.21          | Y      |
| 1.3 ( | CeN1-3  | snRNA U1                  | Known         |           | 164        | 18       | 1        | I-A      | 1      | 91.46          |        |
| 1.4 ( | CeN1-4  | snRNA U1                  | Known         |           | 164        | 14       | 1        | I-A      | 1      | 93.29          |        |
| 1.5 ( | CeN1-5  | snRNA U1                  | Known         |           | 164        | 13       | 1        | I-A      | 1      | 90.85          |        |
| 1.6 ( | CeN1-6  | snRNA U1                  | Known         |           | 164        | 3        | 1        | I-A      | 1      | 90.85          |        |
| 1.7 ( | CeN1-7  | snRNA U1                  | Known         |           | 164        | 3        | 1        | I-A      | 1      | 90.85          |        |
| 2.1 ( | CeN2-1  | snRNA U4                  | Known         |           | 142        | 51       | 1        | I-A      | 1      | 99.3           |        |
| 2.2 ( | CeN2-2  | snRNA U4                  | Known         |           | 142        | 4        | 1        | I-A      | 1      | 97.89          | Y      |
| 3.1 ( | CeN3-1  | snRNA U5                  | Known         |           | 123        | 39       | 1        | I-A      | 1      | 92.68          |        |
| 3.2 ( | CeN3-2  | snRNA U5                  | Known         |           | 122        | 17       | 1        | I-A      | 1      | 92.62          | Р      |
| 3.3 ( | CeN3-3  | snRNA U5                  | Known         |           | 123        | 12       | 1        | I-A      | 1      | 82.11          |        |
| 3.4 ( | CeN3-4  | snRNA U5                  | Known         |           | 122        | 4        | 1        | I-A      | 1      | 91.8           | Y      |
| 3.5 ( | CeN3-5  | snRNA U5                  | Known         |           | 122        | 2        | 1        | I-A      | 1      | 93.44          |        |
| 3.6 ( | CeN3-6  | snRNA U5                  | Known         |           | 122        | 2        | 1        | I-A      | 1      | 93.44          | Y      |
| 4 (   | CeN4    | snRNA U6                  | Known         |           | 102        | 16       | 1        | I-B      | 1      | 100            | P      |
| 5 (   | CeN5    | snoRNA C/D                | Known         | U18       | 65         | 6        | 1        | I-A      | 1      | 98.46          | •      |
| 6 (   | CeN6    | snRNA sls-2               | Puta          | ••••      | 107        | 4        | 1        | I-A      | 1      | 87 85          |        |
| 7 (   | CeN7    | snRNA sls-2               | Puta          | Y75B8A 38 | 110        | 3        | 1        | I-A      | 1      | 93.64          |        |
| 810   | CeN8-1  | snRNA sls-2               | Puta          | 11020,    | 110        | 3        | 1        | I-A      | 1      | 34 55          | Y      |
| 820   | CeN8-2  | snRNA sls-2               | Puta          |           | 111        | 2        | 0.5      | I-A      | 1      | 85 59          | •      |
| 9 (   | CeN9    | scRNA vrn-1               | Known         |           | 107        | 2        | 0.0      | I-B      |        | 22 43          |        |
| 10 0  | CeN10   | RNAase P RNA              | Known         |           | 253        | 2        | -0.5     | I-B      | 1      | 90.12          |        |
| 11 (  | CeN11   | snRNA sls-2               | Puta          |           | 104        | 1        | 0.0      | Ι_Δ      | 1      | 83.65          |        |
| 12 (  | CeN12   | snRNA sls_2               | Puta          |           | 107        | 1        | 0.0      | Ι_Δ      | 1      | 50.00          | Y      |
| 13 (  |         | snoRNA C/D                | Known         | V71D11A 7 | 65         | 7        | -1       | 173      | 2      | 00.47          | Y      |
| 14 (  |         | snoRNA C/D                | Known         |           | 73         | 6        | _1       |          | 2      | 75 34          | •      |
| 15 (  | CeN15   | snoRNA C/D                | Known         | F30H5 4   | 86         | 4        | 1        |          | 2      | 89 53          |        |
| 16 (  | CeN16-1 | snRNA sls_2               | Puta          | 1 00110.4 | 108        | 7        | 1        |          | 2      | 85 19          |        |
| 16 (  | CeN16-2 | snRNA sis-2               | Puta          |           | 100        | 6        | 1        | VI       |        | 87.04          |        |
| 16 (  | CeN16-3 | snRNA sis-2               | Puta          |           | 100        | 6        | 1        | VI       |        | 85 19          |        |
| 16 (  |         | enRNA ele_2               | Puta          |           | 100        | 1        | 1        |          |        | 85 10          |        |
| 17 (  |         | SHINA SIS-2<br>ShoPNA C/D | Known         | 1115      | 110        | 7        | 1        | V        |        | 82.73          | V      |
| 18 (  |         | shoring C/D               | Known         | 015       | 186        | 22       | -1       | V<br>I A | 1      | 02.75          | ı<br>D |
| 10 (  |         | enDNA ele 2               | Duta          |           | 100        | 22       | 1        |          | 1      | 30.32<br>47.66 | 1      |
| 20 (  |         | enDNA ele 2               | n uta<br>Duta |           | 107        | 1        | 05       |          |        | 16.67          |        |
| 20 0  |         | 311111A 313-2             | Novel         |           | 100        | ı<br>80  | 0.5      |          | 1      | 02.86          |        |
| 210   |         |                           | Novel         |           | 120        | 47       | 1        |          | 1      | 92.00          |        |
| 21 0  |         | snoRNA C/D                | Novel         |           | 76         | 30       | 1        |          | י<br>1 | 23.68          |        |
| 22 (  | CoN22 1 | SHURINA GID               | Novel         |           | 100        | 21       | 05       |          | 1      | 23.00          |        |
| 23 (  | CoN23-1 |                           | Novel         |           | 100        | 21       | 0.5      |          | 1      | 06 12          |        |
| 23 (  |         | SDOPNA C/D                | Novel         |           | 74         | 10       | 1        |          | 1      | 90.12<br>80.10 |        |
| 24 0  | CoN25 1 | SHURINA C/D               | Novel         |           | 74         | 19       | 1        | 1-A      | 1      | 69.19<br>57.14 | V      |
| 25 0  |         | SHIRINA                   | Novel         |           | 11<br>02   | 17       | 1        | 1-A      | 1      | 52.66          | I      |
| 25 (  |         | SHIRNA                    | Novel         |           | 02<br>70   | 4        |          | I-A      | 1      | 00.00<br>41.02 |        |
| 20 0  |         | SHIRNA                    | Novel         |           | 70         | 1        | 0.5      | I-A      | 1      | 41.03          | V      |
| 20 (  | CoN26-4 | SIIIRINA                  | Dute          |           | / Ŏ<br>100 | ا<br>م ہ | 0.5<br>⊾ | I-A      | ا<br>4 | 41.03          | T<br>V |
| 20 (  |         | U3(SIIIRINA)              | rula<br>Duto  |           | 100        | 14       | 1        | I-A      | 1      | 94.U9<br>07.95 | T<br>D |
| 200   | CON20-2 | US(SHIRINA)               | r uld<br>Duto |           | 100        | 10       | ו<br>ז   | I-A      | ا<br>م | 91.00<br>06.04 | Г      |
| 20 (  | CONDE 4 | US(SHIRINA)               | r uld<br>Dute |           | 100        | Ŏ<br>E   | 1        | I-A      | ا<br>ہ | 90.24<br>02 50 |        |
| 20 0  | CON20-4 | US(SHIRINA)               | r-uia<br>Duto |           | 10/        | C<br>∧   | U<br>4   | I-A      | ا<br>م | 30.00<br>02 05 |        |
| 21 (  | CON27   | OS(SINKINA)               | ruld<br>Novel |           | 10/        | 4        | ן<br>ג   | I-A      | ا<br>4 | 93.UD<br>06.05 | V      |
| 27 (  |         | SHUKINA U/D               | novei         |           | δŪ         | 12       | . I      | I-A      | 1      | 90.25          | ľ      |

| 28 CeN28   | snoRNA C/D     | Novel   |        | 88  | 11                  | 1    | I-A  | 1 | 90.91 | Y  |
|------------|----------------|---------|--------|-----|---------------------|------|------|---|-------|----|
| 29 CeN29   |                | Novel   |        | 82  | 6                   | 1    | I-A  | 1 | 93.9  |    |
| 30 CeN30   | snoRNA C/D     | Novel   |        | 73  | 6                   | 1    | I-A  | 1 | 87.67 |    |
| 31 CeN31   | snIRNA         | Novel   |        | 79  | 5                   | 1    | I-A  | 1 | 45.57 |    |
| 32 CeN32   | snIRNA         | Novel   |        | 77  | 4                   | 1    | I-A  | 1 | 64.94 | Y  |
| 33 CeN33   | snoRNA C/D     | Novel   |        | 119 | 3                   | 1    | I-A  | 1 | 88.24 | Y  |
| 34 CeN34   |                | Novel   |        | 186 | 2                   | -0.5 | I-B  | 1 | 95.7  | Ŷ  |
| 35 CeN35   |                | Novel   |        | 70  | 2                   | 1    | I-A  | 1 | 24 29 | Ŷ  |
| 36 CeN36-1 | SNORNA H/ACA   | Novel   |        | 130 | 50                  | _1   |      | 2 | 62.31 | •  |
| 36 CeN36-2 |                | Novel   |        | 120 | 7                   | -1   |      | 2 | 61 24 |    |
| 37 CoN37   | SHORINA HIAOA  | Novel   |        | 120 | 3/                  | _1   |      | 2 | 58 78 |    |
| 38 CoN38   |                | Novel   |        | 127 | 20                  | -1   |      | 2 | 91 75 |    |
| 30 Cell30  |                | Novel   |        | 121 | 29                  | -1   | 11   | 2 | 01.75 | v  |
| 39 CEN39   |                | Novel   |        | 101 | 20                  | -1   |      | 2 | 90.04 | T  |
| 40 Cein40  | SHORINA C/D    | Novei   |        | 122 | 20                  | -1   |      | 2 | 24.59 | V  |
| 41 CeN41   |                | Known   | CeR-9  | 137 | 19                  | -1   |      | 2 | 58.39 | Y  |
| 42 CeN42   | SNORNA H/ACA   | Novel   |        | 131 | 19                  | -1   | <br> | 2 | 38.17 | Y  |
| 43 CeN43   | snoRNA H/ACA   | Novel   |        | 129 | 18                  | -1   | II   | 2 | 50.39 | Y  |
| 44 CeN44   | snoRNA C/D pos | s Novel |        | 74  | 18                  | -1   | II   | 2 | 90.54 |    |
| 45 CeN45   | snoRNA H/ACA   | Novel   |        | 127 | 11                  | -1   | II   | 2 | 42.52 | Y  |
| 46 CeN46   | snoRNA H/ACA p | Novel   |        | 125 | 10                  | -1   | II   | 2 | 84    | Y  |
| 47 CeN47   | snoRNA C/D     | Novel   |        | 155 | 9                   | -1   | II   | 2 | 23.23 | Y  |
| 48 CeN48   | snoRNA H/ACA   | Novel   |        | 125 | 8                   | -1   | II   | 2 | 82.4  | Y  |
| 49 CeN49   | snoRNA H/ACA   | Novel   |        | 134 | 8                   | -1   | Ш    | 2 | 87.31 |    |
| 50 CeN50-1 |                | Novel   |        | 73  | 7                   | -1   | Ш    | 2 | 87.67 |    |
| 50 CeN50-2 |                | Novel   |        | 71  | 1                   | -0.5 | П    | 2 | 87.32 |    |
| 51 CeN51   | snoRNA H/ACA   | Novel   |        | 139 | 6                   | -1   | П    | 2 | 79.14 |    |
| 52 CeN52   |                | Novel   |        | 144 | 6                   | -1   | П    | 2 | 54.17 |    |
| 53 CeN53   | snoRNA C/D     | Novel   |        | 74  | 5                   | -1   | П    | 2 | 93.24 |    |
| 54 CeN54   | snoRNA C/D     | Novel   |        | 68  | 5                   | -1   | II   | 2 | 94 12 | Y  |
| 55 CeN55   | snoRNA H/ACA n | Novel   |        | 129 | 5                   | 0    |      | 2 | 82.95 | Ŷ  |
| 56 CeN56   |                | Known   | CeR-5  | 125 | 5                   | -1   |      | 2 | 33.6  | Ŷ  |
| 57 CeN57   | snoRNA C/D     | Novel   |        | 72  | 5                   | -1   |      | 2 | 86 11 | •  |
| 58 CoN58   |                | Novel   |        | 130 | 1                   | 1    |      | 2 | 00.11 | v  |
|            |                | Novel   |        | 139 | - <del>+</del><br>2 | -1   |      | 2 | 50.05 |    |
|            |                | Novel   |        | 60  | ວ<br>ວ              | -1   |      | 2 | 77.04 |    |
|            |                | Novel   |        | 00  | ა<br>ი              | -1   |      | 2 | 11.94 |    |
|            | SNORINA C/D    | Novei   |        | 76  | 3                   | -0.5 |      | 2 | 69.74 | V  |
| 62 CeN62   | SNORINA C/D    | Novei   |        | 68  | 3                   | -1   |      | 2 | 50    | Ŷ  |
| 63 CeN63   | SNORNA C/D     | Novel   |        | 69  | 2                   | -1   |      | 2 | 95.65 | ., |
| 64 CeN64   |                | Novel   |        | 128 | 2                   | -0.5 | 11   | 2 | 89.84 | Y  |
| 65 CeN65   | snoRNA C/D     | Novel   |        | 65  | 2                   | -1   |      | 2 | 93.85 |    |
| 66 CeN66   |                | Novel   |        | 129 | 2                   | 0    | II   | 2 | 37.21 |    |
| 67 CeN67   | snoRNA H/ACA   | Novel   |        | 134 | 1                   | -0.5 | II   | 2 | 34.33 |    |
| 68 CeN68   | snoRNA H/ACA   | Novel   |        | 121 | 1                   | -0.5 | II   | 2 | 15.7  |    |
| 69 CeN69   | snoRNA C/D     | Known   | CeR-19 | 107 | 1                   | -0.5 | II   | 2 | 91.59 | Y  |
| 70 CeN70   | snoRNA C/D     | Novel   |        | 71  | 1                   | -0.5 | II   | 2 | 87.32 |    |
| 71 CeN71   | sbRNA          | Novel   |        | 75  | 10                  | -1   | 111  | 3 | 25.33 |    |
| 72 CeN72   | sbRNA          | Novel   |        | 100 | 6                   | -1   |      | 3 | 22    |    |
| 73 CeN73-1 | sbRNA          | Novel   |        | 134 | 4                   | 1    | Ш    | 3 | 32.09 |    |
| 73 CeN73-2 | sbRNA          | Novel   |        | 132 | 1                   | 0.5  | Ш    | 3 | 33.33 |    |
| 74 CeN74-1 | sbRNA          | Novel   |        | 80  | 2                   | -1   |      | 3 | 87.5  |    |
| 74 CeN74-2 | sbRNA          | Novel   |        | 78  | 1                   | -0.5 | Ш    | 3 | 80.77 |    |
| 75 CeN75   | sbRNA          | Novel   |        | 80  | 1                   | -0.5 |      | 3 | 28.75 |    |
| 76 CeN76   | sbRNA          | Novel   |        | 78  | 1                   | -0.5 | 111  | 3 | 37,18 |    |
|            |                |         |        |     | •                   | 0.0  |      | 0 | 01.10 |    |

| 77  | CeN77    | shRNA                      | Novel |              | 65       | 1   | -05  | Ш       | 3      | 78 46          | Y      |
|-----|----------|----------------------------|-------|--------------|----------|-----|------|---------|--------|----------------|--------|
| 78  |          | SDIANA<br>SDIANA<br>SDIANA | Novel |              | 160      | 13  | -0.5 | \/      | 0      | 10.40          | v      |
| 70  |          | SHORNA H/ACA               | Novel |              | 121      | 11  | -1   | v       |        | 40.0Z<br>83.07 | v      |
| 20  |          |                            | Novel |              | 121      | 0   | -1   | v       |        | 54.2           | v      |
| 00  |          |                            | Novel |              | 126      | 7   | -1   | v       |        | 54.Z           | v      |
| 01  | CoN92    |                            | Known |              | 120      | 6   | -1   | v       |        | 00.00          | ı<br>V |
| 02  | Celloz   |                            | Novel | CER-0 NCD    | 134      | 6   | -1   | v       |        | 90.5           | I<br>V |
| 83  |          |                            | Novel |              | 400      | 0   | -1   | V       |        | 8.44           | Y<br>V |
| 84  | CeN84    | SNORNA H/ACA               | Novel |              | 129      | 6   | -1   | V       |        | 93.8           | Y      |
| 85  | CeN85    | SNORNA H/ACA               | Novel |              | 217      | 6   | -1   | V       |        | 9.22           | Y      |
| 86  | CeN86    | SNORNA H/ACA p             | Novel |              | 122      | 5   | -1   | V       |        | 54.1           | Y      |
| 87  | CeN87    | SNORNA H/ACA               | Known | CeR-3 NCB    | 134      | 5   | -1   | V       |        | 93.28          | Y      |
| 88  | CeN88    | SNORNA H/ACA               | Novel |              | 140      | 4   | -1   | V       |        | 91.43          | Y      |
| 89  | CeN89    | snoRNA C/D                 | Novel |              | 78       | 4   | -1   | V       |        | 30.77          | Y      |
| 90  | CeN90    | snoRNA H/ACA               | Known | CeR-6        | 127      | 4   | -1   | V       |        | 16.54          | Y      |
| 91  | CeN91    | snoRNA H/ACA               | Novel |              | 150      | 4   | -1   | V       |        | 17.33          | Y      |
| 92  | CeN92    | snoRNA H/ACA               | Novel |              | 132      | 3   | -1   | V       |        | 62.12          | Y      |
| 93  | CeN93    | snoRNA H/ACA               | Novel |              | 131      | 3   | -1   | V       |        | 58.78          | Y      |
| 94  | CeN94    | snoRNA H/ACA               | Novel |              | 197      | 3   | -1   | V       |        | 36.55          | Y      |
| 95  | CeN95    | snoRNA H/ACA               | Novel |              | 139      | 3   | -1   | V       |        | 92.09          | Y      |
| 96  | CeN96    | snoRNA H/ACA               | Novel | snR30        | 221      | 3   | 0    | V       |        | 85.07          | Y      |
| 97  | CeN97    | snoRNA H/ACA               | Novel |              | 218      | 2   | -0.5 | V       |        | 82.57          | Y      |
| 98  | CeN98    | snoRNA C/D                 | Novel |              | 97       | 1   | -0.5 | V       |        | 37.11          | Y      |
| 99  | CeN99    | snoRNA H/ACA               | Novel |              | 131      | 1   | -0.5 | V       |        | 35.88          | Υ      |
| 100 | CeN100   | snoRNA H/ACA               | Known | CeR-4        | 132      | 1   | 0    | V       |        | 63.64          | Υ      |
| 101 | CeN101   | snoRNA H/ACA               | Novel |              | 128      | 1   | -0.5 | V       |        | 89.84          | Y      |
| 102 | CeN102   | snoRNA H/ACA               | Novel |              | 142      | 1   | 0.5  | V       |        | 16.9           | Y      |
| 103 | CeN103   | snoRNA C/D                 | Novel |              | 109      | 1   | -0.5 | V       |        | 25.69          | Y      |
| 104 | CeN104   | snoRNA H/ACA               | Novel |              | 169      | 1   | -0.5 | V       |        | 37.87          | Y      |
| 105 | CeN105   | snoRNA H/ACA               | Novel |              | 141      | 1   | -0.5 | V       |        | 40.43          | Y      |
| 106 | CeN106   | snoRNA C/D                 | Novel |              | 78       | 15  | -1   | V       |        | 83.33          | Ŷ      |
| 107 | CeN107-1 | SRP RNA                    | Puta  |              | 300      | 18  | -1   | IV      |        | 84             | -      |
| 107 | CeN107-2 | SRP RNA                    | Puta  |              | 300      | 15  | -1   | IV      |        | 83.67          |        |
| 107 | CeN107-3 | SRP RNA                    | Puta  |              | 299      |     | -1   | IV      |        | 85.28          | Y      |
| 107 | CeN107-4 | SRP RNA                    | Puta  |              | 308      | 1   | -0.5 | IV      |        | 80.19          | •      |
| 108 | CeN108   | snoRNA C/D                 | Novel |              | 70       | 2   | -0.5 | v       |        | 48.57          | Y      |
| 109 | CeN109   | snoRNA C/D                 | Novel |              | 67       | 1   | 0.5  | v       |        | 44 78          | Ŷ      |
| 110 | CeN110   | snoRNA H/ACA no            | Novel |              | 126      | 1   | -0.5 | v       |        | 53 97          | Ŷ      |
| 111 | CeN111   | snoRNA C/D                 | Novel |              | 70       | 6   | _1   | vi      |        | 87 14          | •      |
| 112 |          | sniRNA                     | Novel |              | 0<br>0   | 5   | 1    |         |        | 27 78          |        |
| 113 | CeN113   | snoRNA C/D noss            | Novel |              | 131      | 3   | -1   | VI      |        | 24.43          |        |
| 114 | CeN114   | shoRNA C/D                 | Novel |              | 63       | 2   | _0.5 | 11      | 2      | 24.40          |        |
| 115 | CeN115   | snipNA                     | Novel |              | 150      | - 1 | 0.5  |         | 2      | 17.61          |        |
| 116 |          | enDNA SI 1                 | Duta  |              | 08       | 112 | 0.5  |         | 1      | 08.08          |        |
| 117 | CoN117   | shiring SLI                | Puta  | cn2/17       | 162      | 20  | 1    |         | ו<br>1 | 90.90          |        |
| 117 |          | SHURINA C/D                | Puta  | SII2417      | 60       | 20  | 1    | 1-A     | ו<br>ר | 93.25          | v      |
| 110 | CeNIIO   | SHORNA C/D                 | Pula  | SITT 165 COT | 00<br>70 | 4   | -1   |         | 2      | 92.00          | T<br>V |
| 119 | CeNTI9   | SHORINA C/D                | Pula  | SH2317       | 70       | 0   | -1   |         | ۲<br>۸ | 41.03          | Y<br>V |
| 120 | CeN120   | SNORNA C/D                 | Puta  | sn3159       | 78       | 9   | 1    | I-A     | 1      | 85.9           | Ŷ      |
| 121 | CeN121   | SNOKNA C/D                 | Puta  | sn2343       | 79<br>75 | 5   | 1    | I-A     | 1      | 68.35          |        |
| 122 | CeN122   | SNOKNA C/D                 | Puta  | sn2429       | 75       | 9   | 1    | I-A<br> | 1      | 92             | . /    |
| 123 | CeN123   | SNORNA C/D                 | Puta  | sn3071       | /6       | 1   | -0.5 |         | 2      | 94.74          | Y      |
| 124 | CeN124   | SNORNA C/D                 | Puta  | sn2903       | 92       | 9   | -1   | V       | ~      | 96.74          | Y      |
| 125 | CeN125   | snoRNA H/ACA               | Novel |              | 138      | 3   | -0.5 | <br>    | 2      | 52.9           | Y      |
| 126 | CeN126   | snoRNA H/ACA               | Novel |              | 130      | 3   | -1   | 11      | 2      | 87.69          | Y      |

| 127 CeN127 | snoRNA H/ACA | Novel | 139 | 1 | -0.5 | V |   | 23.6  | Υ |
|------------|--------------|-------|-----|---|------|---|---|-------|---|
| 128 CeN128 | snoRNA H/ACA | Novel | 246 | 1 | -0.5 | V |   | 31.33 | Υ |
| 129 CeN129 |              | Novel | 70  | 1 | -0.5 | П | 2 | 65.71 | Υ |

| gene      | Chr. | Start    | Stop     | Grou<br>p | UM | Host Gene  | Intron<br>Size | Start | Stop | Rest | Host gene<br>molecular_function   |
|-----------|------|----------|----------|-----------|----|------------|----------------|-------|------|------|-----------------------------------|
| cen11     | IV   | 5317260  | 5317363  | I-A       | 1  |            |                |       |      |      |                                   |
| cen1-1    | II   | 12944698 | 12944861 | I-A       | 1  | F58G1.7    | 431            | 220   | 383  | 48   | structural constituent of ribosoi |
| cen116.1  | V    | 17131684 | 17131781 | I-A       | 1  |            |                |       |      |      |                                   |
| cen116.10 | V    | 17133642 | 17133739 | I-A       | 1  |            |                |       |      |      |                                   |
| cen116.2  | V    | 17124248 | 17124345 | I-A       | 1  |            |                |       |      |      |                                   |
| cen116.3  | V    | 17123272 | 17123369 | I-A       | 1  |            |                |       |      |      |                                   |
| cen116.4  | V    | 17125228 | 17125325 | I-A       | 1  |            |                |       |      |      |                                   |
| cen116.5  | V    | 17127176 | 17127273 | I-A       | 1  |            |                |       |      |      |                                   |
| cen116.6  | V    | 17132666 | 17132763 | I-A       | 1  |            |                |       |      |      |                                   |
| cen116.7  | V    | 17126204 | 17126301 | I-A       | 1  |            |                |       |      |      |                                   |
| cen116.8  | V    | 17120732 | 17120829 | I-A       | 1  |            |                |       |      |      |                                   |
| cen116.9  | V    | 17128152 | 17128249 | I-A       | 1  |            |                |       |      |      |                                   |
| cen117    | I    | 3747     | 3909     | I-A       | 1  |            |                |       |      |      |                                   |
| cen12     | III  | 7140371  | 7140475  | I-A       | 1  | B0280.12a  | 467            | 258   | 362  | 105  | AMPA (non-NMDA)-type ionot        |
| cen1-2    | II   | 6968323  | 6968484  | I-A       | 1  | C15F1.5    | 359            | 150   | 311  | 48   | ATP binding;ATPase activity;A     |
| cen120    | II   | 11224084 | 11224161 | I-A       | 1  | T06D8.3    | 1253           | 1111  | 1188 | 65   | structural constituent of ribosoi |
| cen121    | IV   | 867061   | 867139   | I-A       | 1  |            |                |       |      |      |                                   |
| cen122    | V    | 8250479  | 8250552  | I-A       | 1  |            |                |       |      |      |                                   |
| cen1-3    | V    | 14270131 | 14270294 | I-A       | 1  |            |                |       |      |      |                                   |
| cen1-4    | V    | 9093464  | 9093627  | I-A       | 1  |            |                |       |      |      |                                   |
| cen1-5    | V    | 14465778 | 14465941 | I-A       | 1  |            |                |       |      |      |                                   |
| cen1-6    | V    | 14031060 | 14031223 | I-A       | 1  |            |                |       |      |      |                                   |
| cen1-7    | II   | 7171769  | 7171932  | I-A       | 1  |            |                |       |      |      |                                   |
| cen18.1   | II   | 13835827 | 13836012 | I-A       | 1  |            |                |       |      |      |                                   |
| cen18.2   | II   | 13948862 | 13949047 | I-A       | 1  |            |                |       |      |      |                                   |
| cen18.3   | II   | 13951311 | 13951496 | I-A       | 1  | W07G1.2    | 334            | 92    | 277  | 57   | oxidoreductase activity;          |
| cen18.4   | II   | 13852678 | 13852863 | I-A       | 1  | F08G2.8    | 609            | 219   | 404  | 205  | Aegilops tauschii Gamma-gliac     |
| cen18.5   | II   | 13829200 | 13829385 | I-A       | 1  |            |                |       |      |      |                                   |
| cen18.6   | Ι    | 12181779 | 12181964 | I-A       | 1  |            |                |       |      |      |                                   |
| cen18.7   | Ι    | 12293799 | 12293984 | I-A       | 1  |            |                |       |      |      |                                   |
| cen18.8   | Ι    | 12332812 | 12332997 | I-A       | 1  |            |                |       |      |      |                                   |
| cen18.9   | Ι    | 12294641 | 12294826 | I-A       | 1  |            |                |       |      |      |                                   |
| cen2-1.1  | V    | 11982706 | 11982847 | I-A       | 1  |            |                |       |      |      |                                   |
| cen2-1.2  | V    | 11480736 | 11480877 | I-A       | 1  |            |                |       |      |      |                                   |
| cen21-1   | IV   | 8428602  | 8428727  | I-A       | 1  |            |                |       |      |      |                                   |
| cen21-2   | IV   | 4880732  | 4880856  | I-A       | 1  |            |                |       |      |      |                                   |
| cen22     | I    | 8253603  | 8253678  | I-A       | 1  |            |                |       |      |      |                                   |
| cen2-2    | V    | 7145310  | 7145451  | I-A       | 1  | F10D2.6    | 745            | 134   | 275  | 470  | UDP-glucuronosyl and UDP-gl       |
| cen23-1   | II   | 15025700 | 15025799 | I-A       | 1  |            |                |       |      |      |                                   |
| cen23-2   |      | 5653815  | 5653917  | I-A       | 1  |            |                |       |      |      |                                   |
| cen24     | II   | 8091627  | 8091700  | I-A       | 1  |            |                |       |      |      |                                   |
| cen25-1   | IV   | 9511376  | 9511452  | I-A       | 1  | C33A12.3   | 831            | 615   | 691  | 140  |                                   |
| cen25-2   | V    | 14095157 | 14095238 | I-A       | 1  |            |                |       |      |      |                                   |
| cen25-3   | V    | 14098977 | 14099053 | I-A       | 1  |            |                |       |      |      |                                   |
| cen25-4   | IV   | 14863955 | 14864032 | I-A       | 1  | Y57G11C.38 | 2139           | 416   | 493  | 1646 | electron transporter activity;he  |
| cen26-1   | I    | 10525030 | 10525215 | I-A       | 1  | F59C6.6    | 949            | 221   | 406  | 543  | pyrophosphatase activity;         |
| cen26-2.1 | V    | 11178117 | 11178302 | I-A       | 1  | T19C4.6    | 534            | 224   | 409  | 125  | signal transducer activity;       |
| cen26-2.2 | V    | 11179523 | 11179708 | I-A       | 1  |            |                |       |      |      |                                   |
| cen26-3   | V    | 11587780 | 11587964 | I-A       | 1  |            |                |       |      |      |                                   |
| cen26-4   | I    | 10573309 | 10573495 | I-A       | 1  |            |                |       |      |      |                                   |
| cen26-5   | IV   | 14326921 | 14327107 | I-A       | 1  |            |                |       |      |      |                                   |
| cen27     | V    | 8351699  | 8351778  | I-A       | 1  | C08D8.1    | 303            | 150   | 229  | 74   |                                   |
| cen28     | II   | 14018243 | 14018330 | I-A       | 1  | F01D5.10   | 642            | 498   | 585  | 57   | Chondroitin 6-sulfotransferase    |
| cen29     | II . | 5599723  | 5599804  | I-A       | 1  |            |                |       |      |      |                                   |
| cen30     | 111  | 9717276  | 9717348  | I-A       | 1  |            |                |       |      |      |                                   |
| cen31     | IV   | 13600822 | 13600900 | I-A       | 1  |            |                |       |      |      |                                   |
| cen3-1    | I    | 2688948  | 2689070  | I-A       | 1  |            |                |       |      |      |                                   |
| cen32     | IV   | 9511746  | 9511822  | I-A       | 1  | C33A12.3   | 831            | 245   | 321  | 510  |                                   |

| cen3-2.1 | IV  | 9464500  | 9464621  | I-A | 1 | F38E11.6a  | 422  | 128  | 249  | 173 structural constituent of ribosoi |
|----------|-----|----------|----------|-----|---|------------|------|------|------|---------------------------------------|
| cen3-2.2 | IV  | 9444625  | 9444746  | I-A | 1 |            |      |      |      |                                       |
| cen33    | I   | 2085039  | 2085157  | I-A | 1 | Y37E3.11   | 700  | 487  | 605  | 95 nucleotidyltransferase activity;   |
| cen3-3   | IV  | 7316722  | 7316844  | I-A | 1 |            |      |      |      |                                       |
| cen3-4   | IV  | 9001287  | 9001408  | I-A | 1 | C53D6.8    | 417  | 247  | 368  | 49                                    |
| cen35    | V   | 8231492  | 8231561  | I-A | 1 | C16D9.2a   | 392  | 286  | 355  | 37 ATP binding;protein kinase act     |
| cen3-5   | IV  | 12787114 | 12787235 | I-A | 1 |            |      |      |      |                                       |
| cen3-6   | IV  | 2655067  | 2655188  | I-A | 1 | Y69A2AR.31 | 492  | 222  | 343  | 149 electron transporter activity;he  |
| cen5     | 11  | 5701626  | 5701690  | I-A | 1 |            |      |      |      |                                       |
| cen6     | I   | 9065948  | 9066054  | I-A | 1 |            |      |      |      |                                       |
| cen7     | III | 12250336 | 12250445 | I-A | 1 |            |      |      |      |                                       |
| cen8-1   | III | 11090883 | 11090992 | I-A | 1 | W09D6.5    | 754  | 609  | 718  | 36 Serine/arginine repetitive matri   |
| cen8-2   | III | 11090286 | 11090396 | I-A | 1 |            |      |      |      |                                       |
| cen10    | I   | 13472005 | 13472257 | I-B | 1 |            |      |      |      |                                       |
| cen34    | Ш   | 7200160  | 7200345  | I-B | 1 | E04F6.2    | 996  | 508  | 693  | 303 Molecular chaperone/chaperor      |
| cen4.1   | V   | 858921   | 859022   | I-B | 1 |            |      |      |      |                                       |
| cen4.10  | IV  | 4885544  | 4885645  | I-B | 1 |            |      |      |      |                                       |
| cen4.11  | IV  | 13443720 | 13443821 | I-B | 1 |            |      |      |      |                                       |
| cen4.12  | III | 4414154  | 4414255  | I-B | 1 | R07E5.13   | 718  | 588  | 689  | 29 ATP binding;DNA binding;DNA        |
| cen4.13  | III | 9447650  | 9447751  | I-B | 1 |            |      |      |      |                                       |
| cen4.14  | III | 10989552 | 10989653 | I-B | 1 | W05B2.7    | 360  | 205  | 306  | 54 oxidoreductase activity;           |
| cen4.15  | III | 9445803  | 9445904  | I-B | 1 |            |      |      |      |                                       |
| cen4.16  | III | 4426823  | 4426924  | I-B | 1 | C28A5.6    | 843  | 720  | 821  | 22 ATP binding;protein kinase act     |
| cen4.17  | III | 5080755  | 5080856  | I-B | 1 |            |      |      |      |                                       |
| cen4.2   | IV  | 13443370 | 13443471 | I-B | 1 | K09B11.10  | 962  | 782  | 883  | 79                                    |
| cen4.3   | IV  | 13435760 | 13435861 | I-B | 1 | K09B11.10  | 3947 | 3816 | 3917 | 30                                    |
| cen4.4   | IV  | 4930950  | 4931051  | I-B | 1 | Y9C9A.8    | 375  | 221  | 322  | 53 structural constituent of ribosoi  |
| cen4.5   | IV  | 4866807  | 4866908  | I-B | 1 |            |      |      |      |                                       |
| cen4.6   | IV  | 13440527 | 13440628 | I-B | 1 | K09B11.10  | 1770 | 1431 | 1532 | 238                                   |
| cen4.7   | IV  | 13439072 | 13439173 | I-B | 1 |            |      |      |      |                                       |
| cen4.8   | IV  | 13440877 | 13440978 | I-B | 1 |            |      |      |      |                                       |
| cen4.9   | IV  | 4864630  | 4864731  | I-B | 1 |            |      |      |      |                                       |
| cen9     | IV  | 7499498  | 7499603  | I-B | 1 |            |      |      |      |                                       |
| cen114   | I   | 8267492  | 8267554  | II  | 2 |            |      |      |      |                                       |
| cen118   | II  | 11484586 | 11484653 | II  | 2 | B0334.2    | 161  | 52   | 119  | 42 TWK (two-P domain K+) potas        |
| cen119   | II  | 10840222 | 10840299 | II  | 2 | M106.1     | 224  | 73   | 150  | 74 ATP binding;DNA binding;DNA        |
| cen123   | V   | 12306296 | 12306371 | Ш   | 2 | C51F7.1    | 267  | 109  | 184  | 83 Membrane-associated protein        |
| cen125   | V   | 19645623 | 19645758 | Ш   | 2 | Y43F8C.7   | 1466 | 418  | 553  | 913 hydrolase activity;               |
| cen126   | V   | 12599436 | 12599565 | П   | 2 | C14C10.3   | 240  | 86   | 215  | 25 ATP binding;ATPase activity;A      |
| cen129   | V   | 6891670  | 6891739  | II  | 2 | K11C4.3a   | 270  | 160  | 229  | 41 Beta-spectrin                      |
| cen13    | III | 1122497  | 1122561  | П   | 2 | Y71D11A.3a | 5251 | 5114 | 5178 | 73 electron transporter activity;he   |
| cen14    | IV  | 8253081  | 8253153  | II  | 2 |            |      |      |      |                                       |
| cen15    |     | 502802   | 502887   | II  | 2 |            |      |      |      |                                       |
| cen36-1  |     | 8937670  | 8937798  | II  | 2 |            |      |      |      |                                       |
| cen36-2  | Х   | 15619411 | 15619539 | II  | 2 |            |      |      |      |                                       |
| cen37    | IV  | 8375402  | 8375532  | II  | 2 |            |      |      |      |                                       |
| cen38    |     | 4689596  | 4689732  | II  | 2 |            |      |      |      |                                       |
| cen39    | IV  | 11474036 | 11474166 | II  | 2 | C10C6.6    | 334  | 179  | 309  | 25 ATP binding;ATPase activity;A      |
| cen40    | V   | 15193561 | 15193682 | II  | 2 |            |      |      |      |                                       |
| cen41    | V   | 16372802 | 16372938 | II  | 2 | W08G11.3   | 284  | 97   | 233  | 51 Early endosome antigen             |
| cen42    | II  | 10545106 | 10545236 | II  | 2 | R166.5a    | 126  | -61  | 69   | 57 structural constituent of ribosor  |
| cen43    | I   | 6220760  | 6220888  | II  | 2 | T08B2.9a   | 350  | 172  | 300  | 50 ATP binding;phenylalanine-tRI      |
| cen44    | II  | 9774670  | 9774743  | Ш   | 2 |            |      |      |      |                                       |
| cen45    | I   | 9184382  | 9184508  | Ш   | 2 | F25H5.3a   | 395  | 206  | 332  | 63 pyruvate kinase activity;          |
| cen46    | IV  | 12086680 | 12086804 | Ш   | 2 | F11A10.7   | 284  | 144  | 268  | 16 RNA recognition motif              |
| cen47    | I   | 5611666  | 5611820  | Ш   | 2 | F46F11.9a  | 891  | 646  | 800  | 91 predicted involvement in meios     |
| cen48    | II  | 4942378  | 4942502  | Ш   | 2 | ZK546.13   | 283  | 117  | 241  | 42 Vitamin-D-receptor interacting     |
| cen49    | II  | 15165781 | 15165914 | Ш   | 2 |            |      |      |      |                                       |
| cen50-1  | IV  | 9191246  | 9191318  | Ш   | 2 |            |      |      |      |                                       |
| cen50-2  | Х   | 6867890  | 6867960  | Ш   | 2 |            |      |      |      |                                       |

| cen51    | Ш       | 8075423  | 8075561  | П   | 2 |            |      |      |      |                                       |
|----------|---------|----------|----------|-----|---|------------|------|------|------|---------------------------------------|
| cen52    | - 1     | 2514169  | 2514312  | П   | 2 |            |      |      |      |                                       |
| cen53.1  | I.      | 5715182  | 5715255  | П   | 2 |            |      |      |      |                                       |
| cen53.2  | I       | 5707049  | 5707122  | П   | 2 |            |      |      |      |                                       |
| cen54    | I       | 4175998  | 4176065  | П   | 2 | R12E2.3    | 467  | 110  | 177  | 290 26S proteasome regulatory co      |
| cen55    | IV      | 8927253  | 8927381  | П   | 2 | D1046.1    | 358  | 168  | 296  | 62 mRNA cleavage factor I subun       |
| cen56    | IV      | 2408514  | 2408638  | Ш   | 2 | Y38F2AR.12 | 1229 | 1000 | 1124 | 105 hvdrolase activity:               |
| cen57    | Т       | 8232530  | 8232601  | П   | 2 |            |      |      |      | · · · · · · · · · · · · · · · · · · · |
| cen58    |         | 6248663  | 6248801  |     | 2 | T24H7 2    | 284  | 132  | 270  | 14 oxidoreductase activity            |
| cen59    |         | 2035786  | 2035021  |     | 2 |            | 201  | 102  | 2.0  |                                       |
| con60    | ÷       | 6000873  | 6000040  |     | 2 |            |      |      |      |                                       |
|          |         | 6112014  | 6112880  |     | 2 |            |      |      |      |                                       |
|          |         | 0113014  | 0113009  |     | 2 |            | 220  | 100  | 170  | 50                                    |
| cenoz    |         | 14617031 | 14617098 |     | 2 | F 19H8.4   | 220  | 103  | 170  | 50                                    |
| cen63    |         | /18393/  | 7184005  |     | 2 |            |      |      |      |                                       |
| cen64    |         | 5602005  | 5602132  |     | 2 | C05D2.6    | 569  | 420  | 547  | 22                                    |
| cen65    | I       | 2410191  | 2410255  | II  | 2 |            |      |      |      |                                       |
| cen66    | II      | 8547129  | 8547257  | II  | 2 |            |      |      |      |                                       |
| cen67    | III     | 10432221 | 10432354 | II  | 2 |            |      |      |      |                                       |
| cen68    | Х       | 1891503  | 1891623  | Ш   | 2 |            |      |      |      |                                       |
| cen69    | V       | 10774710 | 10774816 | Ш   | 2 | D1054.3    | 594  | 376  | 482  | 112 Suppressor of G2 allele of skp    |
| cen70    | V       | 15876438 | 15876508 | Ш   | 2 |            |      |      |      |                                       |
| cen71    | Ш       | 13834343 | 13834417 | Ш   | 3 |            |      |      |      |                                       |
| cen72    | V       | 5590674  | 5590772  | Ш   | 3 |            |      |      |      |                                       |
| cen73-1  | V       | 5589880  | 5590013  | Ш   | 3 |            |      |      |      |                                       |
| cen73-2  | V       | 5589550  | 5589681  | Ш   | 3 |            |      |      |      |                                       |
| cen74-1  | х       | 14476786 | 14476865 | Ш   | 3 |            |      |      |      |                                       |
| cen74-2  | х       | 14477464 | 14477541 | ш   | 3 |            |      |      |      |                                       |
| cen75    | ш       | 7278372  | 7278451  | III | 3 |            |      |      |      |                                       |
| cen76    |         | 14801237 | 14801314 |     | 3 |            |      |      |      |                                       |
| cen77    |         | 7278633  | 7278697  |     | 3 | B0361 11   | 774  | 655  | 710  | 55 transporter activity:              |
| cen107-1 |         | 5211175  | 5211474  | 117 | 0 | D0001.11   | 114  | 000  | 710  |                                       |
| cen107-1 |         | 5021271  | 5021670  |     |   |            |      |      |      |                                       |
| cen107-2 |         | 4260426  | 4260724  |     |   | D0295 0    | 702  | 204  | 602  | 100 shaling kingga                    |
| cen107-3 |         | 4009400  | 4309734  |     |   | BU205.9    | 702  | 304  | 602  | Too choine kinase                     |
| cen107-4 |         | 43/888/  | 4379176  |     |   | D454.0     | 0.07 | 00   | 100  |                                       |
| centitu  |         | 7208534  | /208665  | V   |   | R151.3     | 227  | 29   | 160  | 67 structural constituent of ribosol  |
| cen101   | V       | 10354315 | 10354442 | V   |   | K07C5.4    | 179  | 35   | 162  | 17 Ribosome biogenesis protein -      |
| cen102   | П       | 12737895 | 12738036 | V   |   | Y46G5A.5   | 252  | 50   | 191  | 61 Phosphatidylinositol synthase      |
| cen103   | I       | 9797298  | 9797406  | V   |   | F26E4.9    | 305  | 52   | 160  | 145 cytochrome-c oxidase activity;    |
| cen104   | V       | 8224873  | 8225041  | V   |   | K07C11.2   | 275  | 43   | 211  | 64 ATP binding;protein kinase act     |
| cen105   | III     | 4757909  | 4758049  | V   |   | B0393.3    | 229  | 47   | 187  | 42 Glucose-induced repressor          |
| cen106   | Ш       | 3068796  | 3068873  | V   |   | H06I04.4a  | 229  | 63   | 140  | 89 ribosomal protein S27a             |
| cen108   | Ш       | 8560616  | 8560685  | V   |   | F54C9.1    | 586  | 61   | 130  | 456 nucleic acid binding;translation  |
| cen109   | V       | 8503169  | 8503235  | V   |   | ZK994.3    | 341  | 232  | 298  | 43 peroxidase activity;               |
| cen110   | Ш       | 794736   | 794861   | V   |   | B0412.4    | 268  | 73   | 198  | 70 structural constituent of riboso   |
| cen124   | V       | 11785579 | 11785670 | V   |   | F55A11.6   | 174  | 55   | 146  | 28 structural constituent of riboso   |
| cen127   | Ш       | 9226749  | 9226887  | V   |   | T23G5.1    | 222  | 34   | 172  | 50 structural constituent of riboso   |
| cen128   | П       | 11876359 | 11876604 | V   |   | K12D12.1   | 345  | 32   | 277  | 68 ATP binding;DNA binding;DNA        |
| cen17    | Ш       | 7337813  | 7337922  | V   |   | F56C9.1    | 229  | 56   | 165  | 64 structural constituent of riboso   |
| cen78    | 1       | 4585831  | 4585990  | V   |   | D1007.12   | 252  | 31   | 190  | 62 structural constituent of riboso   |
| cen79    | Ш       | 7209325  | 7209455  | V   |   | R151.3     | 222  | 23   | 153  | 69 structural constituent of riboso   |
| cen80    | Ш       | 7208944  | 7209074  | v   |   | R151 3     | 198  | 28   | 158  | 40 structural constituent of riboso   |
| cen81    | v       | 10970078 | 10970203 | v   |   | F17C11 9a  | 191  | 27   | 152  | 39 translation elongation factor ac   |
| cen82    |         | 6374351  | 6374484  | v   |   | C16A3 9    | 222  | 28   | 161  | 61 structural constituent of riboso   |
| cen83    |         | 10577240 | 10577464 | v   |   | E25H2 11   | 255  | 20   | 251  | 4 molecular function unknown:         |
| con84    | 1       | 652000   | 654026   | v   |   | K11H12 2   | 200  | 26   | 164  | 58 structural constituent of ribaco   |
| 00095    | 17      | 10560604 | 10560940 | v   |   | C06A1 4    | 222  | 30   | 254  | 4 ATD binding budgeless activity      |
| 00096    | 11      | 02700024 | 02700040 | v   |   |            | 200  | 30   | 201  |                                       |
|          | ١V      | 03/0808  | 03/0929  | v   |   |            | 185  | 32   | 153  | 32 DINA DINAINA;                      |
| cens/    | - I<br> | 111292   | 111425   | V   |   | F53G12.10  | 249  | 32   | 165  |                                       |
| cen88    | 1       | 2069886  | 2070025  | V   |   | Y3/E3.8a   | 214  | 29   | 168  | 46 structural constituent of riboso   |
| cen89    | 111     | 7496494  | 7496571  | V   |   | C07H6.5    | 148  | 22   | 99   | 49 ATP binding;ATP dependent h        |

| page 4/4 |
|----------|
|----------|

| cen90   | III | 794394   | 794520   | V  | B0412.4    | 199 | 30 | 156 | 43 structural constituent of ribosoi |
|---------|-----|----------|----------|----|------------|-----|----|-----|--------------------------------------|
| cen91   | III | 7706783  | 7706932  | V  | C03B8.4    | 255 | 38 | 187 | 68 nuclear protein with multiple zi  |
| cen92   | III | 5679326  | 5679457  | V  | F54E7.2    | 229 | 32 | 163 | 66 structural constituent of ribosoi |
| cen93   | II  | 8602892  | 8603022  | V  | F28C6.7a   | 173 | 32 | 162 | 11 structural constituent of ribosoi |
| cen94   | V   | 8225371  | 8225566  | V  | K07C11.2   | 296 | 38 | 233 | 63 ATP binding;protein kinase act    |
| cen95   | 1   | 2070258  | 2070396  | V  | Y37E3.8a   | 232 | 46 | 184 | 48 structural constituent of ribosoi |
| cen96   | IV  | 4390087  | 4390307  | V  | Y24D9A.4a  | 296 | 29 | 249 | 47 structural constituent of ribosoi |
| cen97   | V   | 10969285 | 10969502 | V  | F17C11.9a  | 326 | 36 | 253 | 73 translation elongation factor ac  |
| cen98   | IV  | 17117888 | 17117978 | V  | Y116A8C.35 | 748 | 49 | 139 | 609 RNA binding;nucleic acid bindi   |
| cen99   | III | 5679693  | 5679823  | V  | F54E7.2    | 167 | 32 | 162 | 5 structural constituent of ribosoi  |
| cen111  | IV  | 7574112  | 7574181  | VI |            |     |    |     |                                      |
| cen112  | IV  | 13601611 | 13601700 | VI |            |     |    |     |                                      |
| cen113  | I   | 11617368 | 11617498 | VI |            |     |    |     |                                      |
| cen115  | IV  | 13709245 | 13709403 | VI |            |     |    |     |                                      |
| cen16-1 | II  | 5543566  | 5543673  | VI |            |     |    |     |                                      |
| cen16-2 | II  | 5844827  | 5844934  | VI |            |     |    |     |                                      |
| cen16-3 | II  | 5544134  | 5544241  | VI |            |     |    |     |                                      |
| cen16-4 | 1   | 4172207  | 4172314  | VI |            |     |    |     |                                      |
| cen19   | 1   | 13305927 | 13306033 | VI |            |     |    |     |                                      |
| cen20   | IV  | 9130710  | 9130817  | VI |            |     |    |     |                                      |
|         |     |          |          |    |            |     |    |     |                                      |