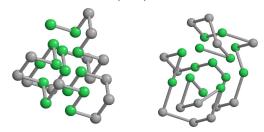

Application: Protein Structure Prediction



Exact Prediction in 3D cubic & FCC

The problem

IN: sequence s in $\{H, P\}^n$ HHPPPHHPHHPPHHPPHHPPHHPPHHPPHH OUT: self avoiding walk ω on cubic/fcc lattice with minimal HP-energy $E_{HP}(s, \omega)$

A First Constraint Model

• Variables
$$X_1, \ldots, X_n, Y_1, \ldots, Y_n, Z_1, \ldots, Z_n$$
 and *HHContacts*

$$\begin{pmatrix} X_i \\ Y_i \\ Z_i \end{pmatrix}$$
 is the position of the *i*th monomer $\omega(i)$

Domains

$$D(X_i) = D(Y_i) = D(Z_i) = \{-n, ..., n\}$$

Constraints

- 1. positions *i* and i + 1 are neighbored (chain)
- 2. all positions differ (self-avoidance)
- 3. relate *HHContacts* to X_i, Y_i, Z_i

4.
$$\begin{pmatrix} X_1 \\ Y_1 \\ Z_1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

A First Constraint Model

• Variables
$$X_1, \ldots, X_n, Y_1, \ldots, Y_n, Z_1, \ldots, Z_n$$
 and *HHContacts*

$$\begin{pmatrix} X_i \\ Y_i \\ Z_i \end{pmatrix}$$
 is the position of the *i*th monomer $\omega(i)$

• Domains

$$D(X_i) = D(Y_i) = D(Z_i) = \{-n,\ldots,n\}$$

Constraints

- 1. positions *i* and i + 1 are neighbored (chain)
- 2. all positions differ (self-avoidance)
- 3. relate *HHContacts* to X_i, Y_i, Z_i

4.
$$\begin{pmatrix} X_1 \\ Y_1 \\ Z_1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

A First Constraint Model

• Variables $X_1, \ldots, X_n, Y_1, \ldots, Y_n, Z_1, \ldots, Z_n$ and *HHContacts* $\begin{pmatrix} X_i \\ Y_i \\ Z_i \end{pmatrix}$ is the position of the *i*th monomer $\omega(i)$

Domains

$$D(X_i) = D(Y_i) = D(Z_i) = \{-n,\ldots,n\}$$

- Constraints
 - 1. positions *i* and i + 1 are neighbored (chain)
 - 2. all positions differ (self-avoidance)
 - 3. relate *HHContacts* to X_i, Y_i, Z_i

4.
$$\begin{pmatrix} X_1 \\ Y_1 \\ Z_1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

The First Model in More Detail (Cubic Lattice)

The Constraints cannot be expressed directly, i.e. we need auxiliary variables

$$Xdiff_{ij} = |X_i - X_j|$$
 $Ydiff_{ij} = |Y_i - Y_j|$ $Zdiff_{ij} = |Z_i - Z_j|$

1. Positions i and i + 1 neighbored (chain)

$$Xdiff_{i(i+1)} + Ydiff_{i(i+1)} + Zdiff_{i(i+1)} = 1$$

2. All positions differ (self-avoidance)

 $Xdiff_{ij} + Ydiff_{ij} + Zdiff_{ij} \neq 0$ (for $i \neq j$).

3. Relate *HHContacts* to X_i, Y_i, Z_i Detect HH-contact, if $Xdiff_{ij} + Ydiff_{ij} + Zdiff_{ij} = 1$ for $s_i = s_j = H$. Then add 1 to *HHContacts*. (Technically, use reified constraints)

The First Model in More Detail (Cubic Lattice)

The Constraints cannot be expressed directly, i.e. we need auxiliary variables

$$Xdiff_{ij} = |X_i - X_j|$$
 $Ydiff_{ij} = |Y_i - Y_j|$ $Zdiff_{ij} = |Z_i - Z_j|$

1. Positions i and i + 1 neighbored (chain)

$$Xdiff_{i(i+1)} + Ydiff_{i(i+1)} + Zdiff_{i(i+1)} = 1$$

$$Xdiff_{ij} + Ydiff_{ij} + Zdiff_{ij} \neq 0$$
 (for $i \neq j$).

The First Model in More Detail (Cubic Lattice)

The Constraints cannot be expressed directly, i.e. we need auxiliary variables

$$Xdiff_{ij} = |X_i - X_j|$$
 $Ydiff_{ij} = |Y_i - Y_j|$ $Zdiff_{ij} = |Z_i - Z_j|$

1. Positions i and i + 1 neighbored (chain)

$$Xdiff_{i(i+1)} + Ydiff_{i(i+1)} + Zdiff_{i(i+1)} = 1$$

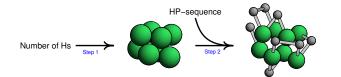
2. All positions differ (self-avoidance)

$$Xdiff_{ij} + Ydiff_{ij} + Zdiff_{ij} \neq 0$$
 (for $i \neq j$).

3. Relate *HHContacts* to X_i , Y_i , Z_i Detect HH-contact, if $Xdiff_{ij} + Ydiff_{ij} + Zdiff_{ij} = 1$ for $s_i = s_j = H$. Then add 1 to *HHContacts*. (Technically, use reified constraints)

• Model is a COP (Constraint Optimization Problem)

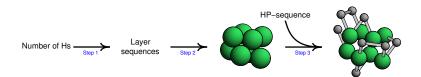
- Branch and Bound Search for Minimizing Energy
- Combined with Symmetry Breaking
- How good is the propagation?
- Main problem of propagation: bounds on contacts/energy From a partial solution, the solver cannot estimate the maximally possible number of HH-contacts well.


- Model is a COP (Constraint Optimization Problem)
- Branch and Bound Search for Minimizing Energy
- Combined with Symmetry Breaking
- How good is the propagation?
- Main problem of propagation: bounds on contacts/energy From a partial solution, the solver cannot estimate the maximally possible number of HH-contacts well.

- Model is a COP (Constraint Optimization Problem)
- Branch and Bound Search for Minimizing Energy
- Combined with Symmetry Breaking
- How good is the propagation?
- Main problem of propagation: bounds on contacts/energy From a partial solution, the solver cannot estimate the maximally possible number of HH-contacts well.

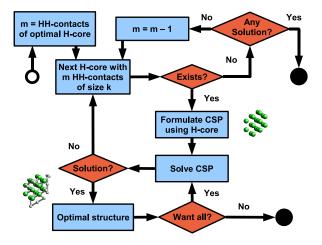
- Model is a COP (Constraint Optimization Problem)
- Branch and Bound Search for Minimizing Energy
- Combined with Symmetry Breaking
- How good is the propagation?
- Main problem of propagation: bounds on contacts/energy From a partial solution, the solver cannot estimate the maximally possible number of HH-contacts well.

- Model is a COP (Constraint Optimization Problem)
- Branch and Bound Search for Minimizing Energy
- Combined with Symmetry Breaking
- How good is the propagation?
- Main problem of propagation: bounds on contacts/energy From a partial solution, the solver cannot estimate the maximally possible number of HH-contacts well.


The Advanced Approach: Cubic & FCC

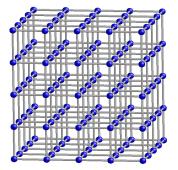
Steps

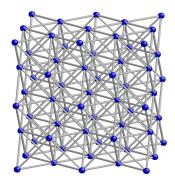
- 1. Core Construction
- 2. Mapping


The Advanced Approach: Cubic & FCC

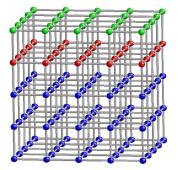
Steps

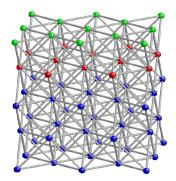
- 1. Bounds
- 2. Core Construction
- 3. Mapping


Workflow: Predict Best Structure(s) of HP-Sequence



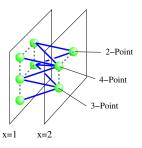
Computing Bounds


- Prepares the construction of cores
- How many contacts are possible for *n* monomers, if freely distributed to lattice points
- Answering the question will give information for core construction
- Main idea: split lattice into layers consider contacts
 - within layers
 - between layers


Layers: Cubic & FCC Lattice

Layers: Cubic & FCC Lattice

Contacts


Contacts =

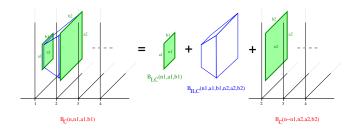
Layer contacts + Contacts between layers

• Bound Layer contacts: Contacts $\leq 2 \cdot n - a - b$

- Bound Contacts between layers
 - cubic: one neighbor in next layer
 Contacts ≤ min(n₁, n₂)
 - FCC: four neighbors in next layer
 i points

Bounding Interlayer Contacts in the FCC

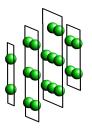
• Needed:


- upper bound for number of contacts between two successive layers in FCC
- NOTE: Layers only described by parameters (*n*₁, *a*₁, *b*₁); (*n*₂, *a*₂, *b*₂)

• Method:

- compute bounds for number of 1/2/3/4-points of first layer
- distribute *n*₂ points greedily
- technical difficulty: tight bounds of 1/2/3/4-points depend on further parameters
- **Result:** $B_{ILC}^{FCC}(n_1, a_1, b_1, n_2, a_2, b_2)$

Recall: $B_{ILC}^{cubic}(n_1, a_1, b_1, n_2, a_2, b_2) = \min(n_1, n_2)$


Recursion Equation for Bounds

- B_C(n, n₁, a₁, b₁) : Contacts of core with n elements and first layer L₁ : n₁, a₁, b₁
- B_{LC}(*n*₁, *a*₁, *b*₁) : Contacts in *L*₁
- $B_{ILC}(n_1, a_1, b_1, n_2, a_2, b_2)$: Contacts between E_1 and E_2 : n_2, a_2, b_2
- B_C(n − n₁, n₂, a₂, b₂) : Contacts in core with n − n₁ elements and first layer E₂

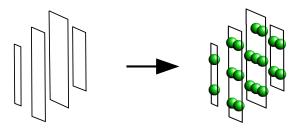
From Recursion:

- by Dynamic Programming: Upper bound on number of contacts
- by Traceback: Set of layer sequences

layer sequence = $(n_1, a_1, b_1), \dots, (n_4, a_4, b_4)$ Set of layer sequences gives distribution of points to layers in all point sets that possibly have maximal number of contacts

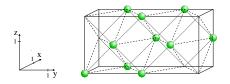
Core Construction

Problem

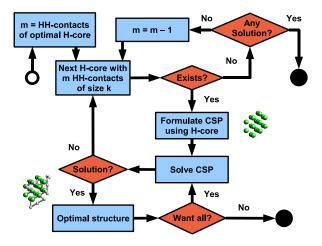

- IN: number *n*, contacts *c*
- OUT: all point sets of size n with c contacts
- Optimization problem
- Core construction is a hard combinatorial problem

Core construction: Modified Problem

Poblem


IN: number *n*, contacts *c*, set of layer sequences S_{ls} OUT: all point sets of size *n* with *c* contacts and layer sequences in S_{ls}

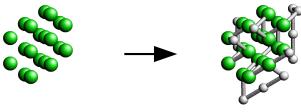
- Use constraints from layer sequences
- Model as constraint satisfaction problem (CSP)


 $(n_1, a_1, b_1), \dots, (n_4, a_4, b_4)$ Core = Set of lattice points

Core Construction — Details

- Number of layers = length of layer sequence
- Number of layers in x, y, and z: Surrounding Cube
- enumerate numbers of layers \Rightarrow fix cube \Rightarrow enumerate points

Workflow



Mapping Sequences to Cores

find structure such that

- H-Monomers on core positions
- all positions differ
- chain connected

- $\rightarrow \ \ \, \text{hydrophobic core}$
- \rightarrow self-avoiding
- \rightarrow walk

compact core

optimal structure

Mapping Sequence to Cores — CSP

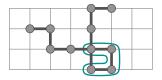
Given: sequence s of size n and n_H Hs core *Core* of size n_H

CSP Model

Variables X₁,..., X_n
 X_i is position of monomer i

Encode positions as integers

$$\mathsf{I}\left(\begin{array}{c}x\\y\\z\end{array}\right) \equiv x + M * y + M^2 * z$$


(unique encoding for 'large enough' M)

- Constraints
 - 1. $X_i \in Core$ for all $s_i = H$
 - 2. X_i and X_{i+1} are neighbors
 - 3. X_1, \ldots, X_n are all different

Constraints for Self-avoiding Walks

- Single Constraints "self-avoiding" and "walk" weaker than their combination
- no efficient algorithm for consistency of combined constraint "self-avoiding walk"
- relaxed combination: stronger and more efficient propagation
 k-avoiding walk constraint

Example: 4-avoiding, but not 5-avoiding

Predict optimal structures by combining the three steps

- 1. Bounds
- 2. Core Construction
- 3. Mapping

- Pre-compute optimal cores for relevant core sizes Given a sequence, only perform Mapping step
- Mapping to cores may fail! We use suboptimal cores and iterate mapping.
- Approach extensible to HPNX HPNX-optimal structures at least nearly optimal for HP.
- Approach extensible to side chains H side chains form core.

Predict optimal structures by combining the three steps

- 1. Bounds
- 2. Core Construction
- 3. Mapping

- Pre-compute optimal cores for relevant core sizes Given a sequence, only perform Mapping step
- Mapping to cores may fail! We use suboptimal cores and iterate mapping.
- Approach extensible to HPNX HPNX-optimal structures at least nearly optimal for HP.
- Approach extensible to side chains H side chains form core.

Predict optimal structures by combining the three steps

- 1. Bounds
- 2. Core Construction
- 3. Mapping

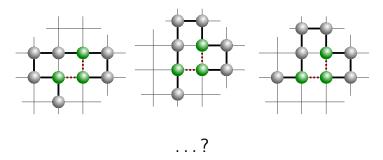
- Pre-compute optimal cores for relevant core sizes Given a sequence, only perform Mapping step
- Mapping to cores may fail! We use suboptimal cores and iterate mapping.
- Approach extensible to HPNX HPNX-optimal structures at least nearly optimal for HP.
- Approach extensible to side chains H side chains form core.

Predict optimal structures by combining the three steps

- 1. Bounds
- 2. Core Construction
- 3. Mapping

- Pre-compute optimal cores for relevant core sizes Given a sequence, only perform Mapping step
- Mapping to cores may fail! We use suboptimal cores and iterate mapping.
- Approach extensible to HPNX HPNX-optimal structures at least nearly optimal for HP.
- Approach extensible to side chains H side chains form core.

Time efficiency


Prediction of one optimal structure ("Harvard Sequences", length 48 [Yue *et al.*, 1995])

CPSP	PERM
0,1 s	6,9 min
0,1 s	40,5 min
4,5 s	100,2 min
7,3 s	284,0 min
1,8 s	74,7 min
1,7 s	59,2 min
12,1 s	144,7 min
1,5 s	26,6 min
0,3 s	1420,0 min
0,1 s	18,3 min

- CPSP: "our approach", constraint-based
- PERM [Bastolla et al., 1998]: stochastic optimization

Many Optimal Structures

Sequence HPPHPPHP

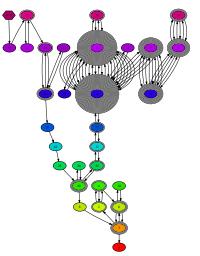
- There can be many ...
- HP-model is degenerated
- Number of optimal structures = degeneracy

Completeness

Predicted number of all optimal structures ("Harvard Sequences")

CPSP	CHCC
10.677.113	$1500 imes10^3$
28.180	$14 imes10^3$
5.090	$5 imes 10^3$
1.954.172	$54 imes10^3$
1.868.150	$52 imes10^3$
106.582	$59 imes10^3$
15.926.554	$306 imes10^3$
2.614	$1 imes 10^3$
580.751	$188 imes 10^3$

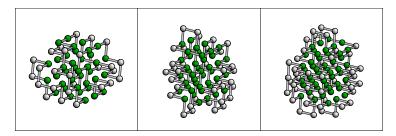
- CPSP: "our approach"
- CHCC [Yue *et al.*, 1995]: complete search with hydrophobic cores


Unique Folder

- HP-model degenerated
- Low degeneracy pprox stable pprox protein-like
- Are there protein-like, unique folder in 3D HP models?
- How to find out?

Unique Folder

- HP-model degenerated
- Low degeneracy pprox stable pprox protein-like
- Are there protein-like, unique folder in 3D HP models?
- How to find out?


MC-search through sequence space

Unique Folder

- HP-model degenerated
- Low degeneracy pprox stable pprox protein-like
- Are there protein-like, unique folder in 3D HP models?
- How to find out?

Yes: many, e.g. about 10,000 for n=27

Software: CPSP Tools

http://cpsp.informatik.uni-freiburg.de

CPSP Tools

and the second second	
Menu	
<u>Home</u>	CPSP Tools
HPstruct	Constraint-based Protein Structure Prediction
structure pred.	Bioinformatics Group
<u>HPconvert</u>	Albert-Ludwigs-University Freiburg
PDB, CML,	web-tools version 1.1.1 (06.04.2011)
3D visualization	
HPdeg	The CPSP-tools package provides programs to solve exactly and completely the problems typical of studi using 3D lattice protein models. Among the tasks addressed are the prediction of globally optimal and/or
degeneracy	suboptimal structures as well as sequence design and neutral network exploration.
HPnnet neutral network	
HPdesian	Observe a tool from the left for ad here were
seq. design	Choose a tool from the left for ad hoc usage (CPSP-tools version 2.4.2) (LatPack version 1.7.2)
LatFit	
PDB to lattice	or
direct access	Download the full <u>CPSP-tools</u> or <u>LatPack package</u> for local usage!
Help	
FAO	
	If you use the CPSP-tools please cite the following publications:
	Martin Mann, Sebastian Will, and Rolf Backofen. CPSP-tools - Exact and Complete Algorithms for High-throughput 3D Lattice Protein Studies.
	of of tools Exact and complete Augentations for high anoughput of Educor Fotom of dates.

In BMC Bioinformatics 9 230 2008