Application: Protein Structure Prediction

Exact Prediction in 3D cubic \& FCC

The problem
IN: sequence s in $\{H, P\}^{n}$
HHPPPHHPHHPPHHHPPHHPPPHPPHH
OUT: self avoiding walk ω on cubic/fcc lattice with minimal HP-energy $E_{H P}(s, \omega)$

A First Constraint Model

- Variables $X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}, Z_{1}, \ldots, Z_{n}$ and HHContacts

$$
\left(\begin{array}{c}
X_{i} \\
Y_{i} \\
Z_{i}
\end{array}\right) \text { is the position of the } i \text { th monomer } \omega(i)
$$

- Domains

$$
D\left(X_{i}\right)=D\left(Y_{i}\right)=D\left(Z_{i}\right)=\{-n, \ldots, n\}
$$

- Constraints

1. positions i and $i+1$ are neighbored (chain)
2. all positions differ (self-avoidance)
3. relate HHContacts to X_{i}, Y_{i}, Z_{i}

A First Constraint Model

- Variables $X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}, Z_{1}, \ldots, Z_{n}$ and HHContacts

$$
\left(\begin{array}{c}
X_{i} \\
Y_{i} \\
Z_{i}
\end{array}\right) \text { is the position of the } i \text { th monomer } \omega(i)
$$

- Domains

$$
D\left(X_{i}\right)=D\left(Y_{i}\right)=D\left(Z_{i}\right)=\{-n, \ldots, n\}
$$

- Constraints

A First Constraint Model

- Variables $X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}, Z_{1}, \ldots, Z_{n}$ and HHContacts

$$
\left(\begin{array}{c}
X_{i} \\
Y_{i} \\
Z_{i}
\end{array}\right) \text { is the position of the } i \text { th monomer } \omega(i)
$$

- Domains

$$
D\left(X_{i}\right)=D\left(Y_{i}\right)=D\left(Z_{i}\right)=\{-n, \ldots, n\}
$$

- Constraints

1. positions i and $i+1$ are neighbored (chain)
2. all positions differ (self-avoidance)
3. relate HHContacts to X_{i}, Y_{i}, Z_{i}
4. $\left(\begin{array}{l}X_{1} \\ Y_{1} \\ Z_{1}\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$

The First Model in More Detail (Cubic Lattice)

The Constraints cannot be expressed directly, i.e. we need auxiliary variables

$$
X_{d i f f}^{i j} 1=\left|X_{i}-X_{j}\right| \quad Y \text { diff }_{i j}=\left|Y_{i}-Y_{j}\right| \quad Z d i f f_{i j}=\left|Z_{i}-Z_{j}\right|
$$

1. Positions i and $i+1$ neighbored (chain)

$$
X \operatorname{diff}_{i(i+1)}+\text { diff }_{i(i+1)}+\text { diff }_{i(i+1)}=1
$$

2. All positions differ (self-avoidance)

$$
\text { Xdiff }_{i j}+\text { Ydiff }_{i j}+\text { Zdiff }_{i j} \neq 0 \quad(\text { for } i \neq j)
$$

3. Relate HHContacts to X_{i}, Y_{i}, Z_{i} Detect HH-contact, if difff $_{i j}+$ Ydiffij $_{i j}+$ dififf $_{i j}=1$ for $s_{i}=s_{j}=H$. Then add 1 to HHContacts. (Technically, use reified constraints)

The First Model in More Detail (Cubic Lattice)

The Constraints cannot be expressed directly, i.e. we need auxiliary variables

$$
X_{d i f f}^{i j} 1=\left|X_{i}-X_{j}\right| \quad Y \text { diff }_{i j}=\left|Y_{i}-Y_{j}\right| \quad Z d i f f_{i j}=\left|Z_{i}-Z_{j}\right|
$$

1. Positions i and $i+1$ neighbored (chain)

$$
X \operatorname{diff}_{i(i+1)}+\text { diff }_{i(i+1)}+\text { diff }_{i(i+1)}=1
$$

2. All positions differ (self-avoidance)

$$
X_{d i f f_{i j}}+\text { Ydiff }_{i j}+\text { Zdiff }_{i j} \neq 0 \quad(\text { for } i \neq j)
$$

3. Relate HHContacts to X_{i}, Y_{i}, Z_{i} Detect HH-contact, if difff $_{i j}+$ Ydiff $_{i j}+$ Zdiff $_{i j}=1$ for $s_{i}=s_{j}=H$. Then add 1 to HHContacts. (Technically, use reified constraints)

The First Model in More Detail (Cubic Lattice)

The Constraints cannot be expressed directly, i.e. we need auxiliary variables

$$
\text { Xdiff }_{i j}=\left|X_{i}-X_{j}\right| \quad Y \text { diff }_{i j}=\left|Y_{i}-Y_{j}\right| \quad Z d i f f_{i j}=\left|Z_{i}-Z_{j}\right|
$$

1. Positions i and $i+1$ neighbored (chain)

$$
X \operatorname{diff}_{i(i+1)}+\text { diff }_{i(i+1)}+\text { diff }_{i(i+1)}=1
$$

2. All positions differ (self-avoidance)

$$
X_{d i f f_{i j}}+\text { Ydiff }_{i j}+\text { Zdiff }_{i j} \neq 0 \quad(\text { for } i \neq j)
$$

3. Relate HHContacts to X_{i}, Y_{i}, Z_{i} Detect HH-contact, if diff $_{i j}+$ Ydiff $_{i j}+$ Zdiff $_{i j}=1$ for $s_{i}=s_{j}=H$. Then add 1 to HHContacts.
(Technically, use reified constraints)

Solving the First Model

- Model is a COP (Constraint Optimization Problem)
- Branch and Bound Search for Minimizing Energy
- Combined with Symmetry Breaking
- How good is the propagation?
- Main problem of propagation: bounds on contacts/energy From a partial solution, the solver cannot estimate the maximally possible number of HH -contacts well.

Solving the First Model

- Model is a COP (Constraint Optimization Problem)
- Branch and Bound Search for Minimizing Energy
- Combined with Symmetry Breaking
- How good is the propagation?
- Main problem of propagation: bounds on contacts/energy From a partial solution, the solver cannot estimate the maximally possible number of HH -contacts well.

Solving the First Model

- Model is a COP (Constraint Optimization Problem)
- Branch and Bound Search for Minimizing Energy
- Combined with Symmetry Breaking
- How good is the propagation?
- Main problem of propagation: bounds on contacts/energy From a partial solution, the solver cannot estimate the maximally possible number of HH -contacts well.

Solving the First Model

- Model is a COP (Constraint Optimization Problem)
- Branch and Bound Search for Minimizing Energy
- Combined with Symmetry Breaking
- How good is the propagation?
- Main problem of propagation: bounds on contacts/energy From a partial solution, the solver cannot estimate the maximally possible number of HH -contacts well.

Solving the First Model

- Model is a COP (Constraint Optimization Problem)
- Branch and Bound Search for Minimizing Energy
- Combined with Symmetry Breaking
- How good is the propagation?
- Main problem of propagation: bounds on contacts/energy From a partial solution, the solver cannot estimate the maximally possible number of HH -contacts well.

The Advanced Approach: Cubic \& FCC

Steps

1. Core Construction
2. Mapping

The Advanced Approach: Cubic \& FCC

Number of Hs $\xrightarrow[\text { Step 1 }]{\begin{array}{c}\text { Layer } \\ \text { sequences }\end{array} \xrightarrow[\text { Step 2 }]{ }}$

Steps

1. Bounds
2. Core Construction
3. Mapping

Workflow: Predict Best Structure(s) of HP-Sequence

Computing Bounds

- Prepares the construction of cores
- How many contacts are possible for n monomers, if freely distributed to lattice points
- Answering the question will give information for core construction
- Main idea: split lattice into layers consider contacts
- within layers
- between layers

Layers: Cubic \& FCC Lattice

Layers: Cubic \& FCC Lattice

Contacts

Contacts =

Layer contacts + Contacts between layers

- Bound Layer contacts: Contacts $\leq 2 \cdot n-a-b$

- Bound Contacts between layers
- cubic: one neighbor in next layer

$$
\text { Contacts } \leq \min \left(n_{1}, n_{2}\right)
$$

- FCC: four neighbors in next layer

$$
i-\text { points }
$$

Bounding Interlayer Contacts in the FCC

- Needed:
- upper bound for number of contacts between two successive layers in FCC
- NOTE: Layers only described by parameters $\left(n_{1}, a_{1}, b_{1}\right) ;\left(n_{2}, a_{2}, b_{2}\right)$
- Method:
- compute bounds for number of $1 / 2 / 3 / 4$-points of first layer
- distribute n_{2} points greedily
- technical difficulty: tight bounds of $1 / 2 / 3 / 4$-points depend on further parameters
- Result: $\mathrm{B}_{\mathrm{ILC}}^{\mathrm{FCC}}\left(n_{1}, a_{1}, b_{1}, n_{2}, a_{2}, b_{2}\right)$

Recall: $\operatorname{BiLC}_{\text {ILubic }}^{\text {cu }}\left(n_{1}, a_{1}, b_{1}, n_{2}, a_{2}, b_{2}\right)=\min \left(n_{1}, n_{2}\right)$

Recursion Equation for Bounds

- $\mathrm{B}_{\mathrm{C}}\left(n, n_{1}, a_{1}, b_{1}\right)$: Contacts of core with n elements and first layer $L_{1}: n_{1}, a_{1}, b_{1}$
- $\operatorname{BLC}\left(n_{1}, a_{1}, b_{1}\right):$ Contacts in L_{1}
- $\mathrm{B}_{\text {ILC }}\left(n_{1}, a_{1}, b_{1}, n_{2}, a_{2}, b_{2}\right)$: Contacts between E_{1} and $E_{2}: n_{2}, a_{2}, b_{2}$
- $\mathrm{B}_{\mathrm{C}}\left(n-n_{1}, n_{2}, a_{2}, b_{2}\right)$: Contacts in core with $n-n_{1}$ elements and first layer E_{2}

Layer sequences

From Recursion:

- by Dynamic Programming: Upper bound on number of contacts
- by Traceback: Set of layer sequences

layer sequence $=\left(n_{1}, a_{1}, b_{1}\right), \ldots,\left(n_{4}, a_{4}, b_{4}\right)$
Set of layer sequences gives distribution of points to layers in all point sets that possibly have maximal number of contacts

Core Construction

Problem

> IN: number n, contacts c
> OUT: all point sets of size n with c contacts

- Optimization problem
- Core construction is a hard combinatorial problem

Core construction: Modified Problem

Poblem

IN: number n, contacts c, set of layer sequences $S_{\text {Is }}$ OUT: all point sets of size n with c contacts and layer sequences in $S_{\text {Is }}$

- Use constraints from layer sequences
- Model as constraint satisfaction problem (CSP)

$\left(n_{1}, a_{1}, b_{1}\right), \ldots,\left(n_{4}, a_{4}, b_{4}\right) \quad$ Core $=$ Set of lattice points

Core Construction - Details

- Number of layers $=$ length of layer sequence
- Number of layers in x, y, and z : Surrounding Cube
- enumerate numbers of layers \Rightarrow fix cube \Rightarrow enumerate points

Workflow

Mapping Sequences to Cores

find structure such that

- H-Monomers on core positions
- all positions differ
- chain connected

optimal structure

Mapping Sequence to Cores - CSP

Given: sequence s of size n and $n_{H} \mathrm{Hs}$
core Core of size n_{H}
CSP Model

- Variables X_{1}, \ldots, X_{n} X_{i} is position of monomer i
Encode positions as integers

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \equiv x+M * y+M^{2} * z
$$

(unique encoding for 'large enough' M)

- Constraints

1. $X_{i} \in$ Core for all $s_{i}=H$
2. X_{i} and X_{i+1} are neighbors
3. X_{1}, \ldots, X_{n} are all different

Constraints for Self-avoiding Walks

- Single Constraints "self-avoiding" and "walk" weaker than their combination
- no efficient algorithm for consistency of combined constraint "self-avoiding walk"
- relaxed combination: stronger and more efficient propagation k-avoiding walk constraint

Example: 4-avoiding, but not 5-avoiding

Putting it together

Predict optimal structures by combining the three steps

1. Bounds
2. Core Construction
3. Mapping

Some Remarks

- Pre-compute optimal cores for relevant core sizes Given a sequence, only perform Mapping step
- Mapping to cores may fail! We use suboptimal cores and iterate mapping.
- Approach extensible to HPNX HPNX-optimal structures at least nearly optimal for HP.
- Approach extensible to side chains H side chains form core.

Putting it together

Predict optimal structures by combining the three steps

1. Bounds
2. Core Construction
3. Mapping

Some Remarks

- Pre-compute optimal cores for relevant core sizes Given a sequence, only perform Mapping step
- Mapping to cores may fail! We use suboptimal cores and iterate mapping.
- Approach extensible to HPNX HPNX-optimal structures at least nearly optimal for HP.
- Approach extensible to side chains H side chains form core.

Putting it together

Predict optimal structures by combining the three steps

1. Bounds
2. Core Construction
3. Mapping

Some Remarks

- Pre-compute optimal cores for relevant core sizes Given a sequence, only perform Mapping step
- Mapping to cores may fail! We use suboptimal cores and iterate mapping.
- Approach extensible to HPNX HPNX-optimal structures at least nearly optimal for HP.
- Approach extensible to side chains H side chains form core.

Putting it together

Predict optimal structures by combining the three steps

1. Bounds
2. Core Construction
3. Mapping

Some Remarks

- Pre-compute optimal cores for relevant core sizes Given a sequence, only perform Mapping step
- Mapping to cores may fail! We use suboptimal cores and iterate mapping.
- Approach extensible to HPNX HPNX-optimal structures at least nearly optimal for HP.
- Approach extensible to side chains

H side chains form core.

Time efficiency

Prediction of one optimal structure
("Harvard Sequences", length 48 [Yue et al., 1995])

CPSP	PERM
$0,1 \mathrm{~s}$	$6,9 \mathrm{~min}$
$0,1 \mathrm{~s}$	$40,5 \mathrm{~min}$
$4,5 \mathrm{~s}$	$100,2 \mathrm{~min}$
$7,3 \mathrm{~s}$	$284,0 \mathrm{~min}$
$1,8 \mathrm{~s}$	$74,7 \mathrm{~min}$
$1,7 \mathrm{~s}$	$59,2 \mathrm{~min}$
$12,1 \mathrm{~s}$	$144,7 \mathrm{~min}$
$1,5 \mathrm{~s}$	$26,6 \mathrm{~min}$
$0,3 \mathrm{~s}$	$1420,0 \mathrm{~min}$
$0,1 \mathrm{~s}$	$18,3 \mathrm{~min}$

- CPSP: "our approach", constraint-based
- PERM [Bastolla et al., 1998]: stochastic optimization

Many Optimal Structures

Sequence HPPHPPPHP

.. ?

- There can be many ...
- HP-model is degenerated
- Number of optimal structures = degeneracy

Completeness

Predicted number of all optimal structures
("Harvard Sequences")

CPSP	CHCC
10.677 .113	1500×10^{3}
28.180	14×10^{3}
5.090	5×10^{3}
1.954 .172	54×10^{3}
1.868 .150	52×10^{3}
106.582	59×10^{3}
15.926 .554	306×10^{3}
2.614	1×10^{3}
580.751	188×10^{3}

- CPSP: "our approach"
- CHCC [Yue et al., 1995]: complete search with hydrophobic cores

Unique Folder

- HP-model degenerated
- Low degeneracy \approx stable \approx protein-like
- Are there protein-like, unique folder in 3D HP models?
- How to find out?

Unique Folder

- HP-model degenerated
- Low degeneracy \approx stable \approx protein-like
- Are there protein-like, unique folder in 3D HP models?
- How to find out?

MC-search through sequence space

Unique Folder

- HP-model degenerated
- Low degeneracy \approx stable \approx protein-like
- Are there protein-like, unique folder in 3D HP models?
- How to find out?

Yes: many, e.g. about 10,000 for $n=27$

Software: CPSP Tools

http://cpsp.informatik.uni-freiburg.de

CPSP Tools

Menu

Home

HPstruct
structure pred.
HPconvert
PDB, CML, .
HPview
3D visualization
HPdeg
degeneracy
HPnnet
neutral network
HPdesign
seq. design
LatFit
PDB to lattice
Results
direct access
Help
FAQ

CPSP Tools

Constraint-based Protein Structure Prediction
Bioinformatics Group
Albert-Ludwigs-University Freiburg
web-tools version 1.1 .1 (06.04 .2011)
The CPSP-tools package provides programs to solve exactly and completely the problems typical of studies using 3D lattice protein models. Among the tasks addressed are the prediction of globally optimal and/or suboptimal structures as well as sequence design and neutral network exploration.

Choose a tool from the left for ad hoc usage
(CPSP-tools version 2.4.2) (LatPack version 1.7.2)
or
Download the full CPSP-tools or LatPack package for local usage!

If you use the CPSP-tools please cite the following publications:

- Martin Mann, Sebastian Will, and Rolf Backofen.

CPSP-tools - Exact and Complete Algorithms for High-throughput 3D Lattice Protein Studies.
In BMC Bioinformatics 92302008

