
Can we predict protein structure?

• Molecular Dynamics on Full Atom Models

• Simpler Protein Models:
• Folding simulation
• Stochastic optimization, e.g. Genetic Algorithms
• Combinatorial optimization, e.g. Constraint Programming



Simple Proteins: HP-Model

P P P P PH H H

P

H P

P HH

H P

P

P



Simple Proteins: HP-Model

P P P P PH H H

P

H P

P HH

H P

P

P

P

H P

P HH

H P

P

P



Simple Proteins: HP-Model

P P P P PH H H

P

H P

P HH

H P

P

P



Structures in the HP-Model

Sequence HPPHPH



Constraint Programming

Constraint programming . . .

• . . . is a programming technique

• . . . describes what rather than how

• . . . i.e. it is declarative

• . . . combines logic reasoning with search

• . . . performs “intelligent” enumeration

• . . . “slays NP-hard dragons”



Well, But What Are Constraints?

Example: Map Coloring

Constraints:
A,C ,D, I ,S ∈ {red , green, blue},
A 6= C , A 6= D, A 6= I , A 6= S ,
C 6= D, C 6= I , I 6= S

• We say only what a solution of the map coloring is

• We need not care how the problem is solved

• A solution is computed by guessing and reasoning
E.g. guess A = red implies C ,D, I , S 6= red;
then guess C = green . . .



Well, But What Are Constraints?

Example: Map Coloring

I

S

A

D

C

Constraints:
A,C ,D, I ,S ∈ {red , green, blue},
A 6= C , A 6= D, A 6= I , A 6= S ,
C 6= D, C 6= I , I 6= S

• We say only what a solution of the map coloring is

• We need not care how the problem is solved

• A solution is computed by guessing and reasoning
E.g. guess A = red implies C ,D, I , S 6= red;
then guess C = green . . .



Well, But What Are Constraints?

Example: Map Coloring

I

S

A

D

C

Constraints:
A,C ,D, I ,S ∈ {red , green, blue},
A 6= C , A 6= D, A 6= I , A 6= S ,
C 6= D, C 6= I , I 6= S

• We say only what a solution of the map coloring is

• We need not care how the problem is solved

• A solution is computed by guessing and reasoning
E.g. guess A = red implies C ,D, I , S 6= red;
then guess C = green . . .



Well, But What Are Constraints?

Example: Map Coloring

I

S

A

D

C

Constraints:
A,C ,D, I ,S ∈ {red , green, blue},
A 6= C , A 6= D, A 6= I , A 6= S ,
C 6= D, C 6= I , I 6= S

• We say only what a solution of the map coloring is

• We need not care how the problem is solved

• A solution is computed by guessing and reasoning
E.g. guess A = red implies C ,D, I , S 6= red;
then guess C = green . . .



Well, But What Are Constraints?

Example: Map Coloring

I

S

A

D

C

Constraints:
A,C ,D, I ,S ∈ {red , green, blue},
A 6= C , A 6= D, A 6= I , A 6= S ,
C 6= D, C 6= I , I 6= S

• We say only what a solution of the map coloring is

• We need not care how the problem is solved

• A solution is computed by guessing and reasoning
E.g. guess A = red implies C ,D, I , S 6= red;
then guess C = green . . .



Well, But What Are Constraints?

Example: Map Coloring

I

S

A

D

C

Constraints:
A,C ,D, I ,S ∈ {red , green, blue},
A 6= C , A 6= D, A 6= I , A 6= S ,
C 6= D, C 6= I , I 6= S

• We say only what a solution of the map coloring is

• We need not care how the problem is solved

• A solution is computed by guessing and reasoning
E.g. guess A = red implies C ,D, I , S 6= red;
then guess C = green . . .



Another Constraints Example

Example

A mathematician forgot the last position of a number code.
She only remembers

• it’s odd

• of course, its a digit, i.e. in [0..9]

• it’s no prime number and not 1.

She can derive the digit (by constraint reasoning)!



Another Constraints Example

Example

A mathematician forgot the last position of a number code.
She only remembers

• it’s odd

• of course, its a digit, i.e. in [0..9]

• it’s no prime number and not 1.

She can derive the digit (by constraint reasoning)!



Commercial Impact of Constraints

Some examples
Michelin and Dassault, Renault Production planning

Lufthansa, Swiss Air, . . . Staff planning

Nokia Software configuration

Siemens Circuit verification

French National Railway Company Train schedule



Constraint Satisfaction Problem (CSP)

Definition
A Constraint Satisfaction Problem (CSP) consists of

• variables X = {X1, . . . ,Xn},
• the domain D that associates finite domains
D1 = D(X1), . . . ,Dn = D(Xn) to X .

• a set of constraints C .

A solution is an assignment of variables to values of their domains
that satisfies the constraints.

We have already seen one example: map coloring.
I

S

A

D

C



Constraint Satisfaction Problem (CSP)

Definition
A Constraint Satisfaction Problem (CSP) consists of

• variables X = {X1, . . . ,Xn},
• the domain D that associates finite domains
D1 = D(X1), . . . ,Dn = D(Xn) to X .

• a set of constraints C .

A solution is an assignment of variables to values of their domains
that satisfies the constraints.

We have already seen one example: map coloring.
I

S

A

D

C



Constraint Satisfaction Problem (CSP)

Definition
A Constraint Satisfaction Problem (CSP) consists of

• variables X = {X1, . . . ,Xn},
• the domain D that associates finite domains
D1 = D(X1), . . . ,Dn = D(Xn) to X .

• a set of constraints C .

A solution is an assignment of variables to values of their domains
that satisfies the constraints.

We have already seen one example: map coloring.
I

S

A

D

C



A Simple Example CSP

• Variables X = {X ,Y ,Z}
• Domains D(X ) = D(Y ) = D(Z ) = {1, 2, 3, 4}
• Constraints C = {X < Y ,Y < Z ,Z ≤ 2}

Remarks

• The constraint set is interpreted as the conjunction

X < Y and Y < Z and Z ≤ 2.

• The domains are interpreted as the constraint

X ∈ D(X ) and Y ∈ D(Y ) and Z ∈ D(Z ).



A Simple Example CSP

• Variables X = {X ,Y ,Z}
• Domains D(X ) = D(Y ) = D(Z ) = {1, 2, 3, 4}
• Constraints C = {X < Y ,Y < Z ,Z ≤ 2}

Remarks

• The constraint set is interpreted as the conjunction

X < Y and Y < Z and Z ≤ 2.

• The domains are interpreted as the constraint

X ∈ D(X ) and Y ∈ D(Y ) and Z ∈ D(Z ).



A Simple Example CSP

• Variables X = {X ,Y ,Z}
• Domains D(X ) = D(Y ) = D(Z ) = {1, 2, 3, 4}
• Constraints C = {X < Y ,Y < Z ,Z ≤ 2}

Remarks

• The constraint set is interpreted as the conjunction

X < Y and Y < Z and Z ≤ 2.

• The domains are interpreted as the constraint

X ∈ D(X ) and Y ∈ D(Y ) and Z ∈ D(Z ).



The N-Queens Problem

4-Queens: place 4 queens on 4× 4 board without attacks



The N-Queens Problem

4-Queens: place 4 queens on 4× 4 board without attacks



The N-Queens Problem

4-Queens: place 4 queens on 4× 4 board without attacks



The N-Queens Problem

4-Queens: place 4 queens on 4× 4 board without attacks



The N-Queens Problem

4-Queens: place 4 queens on 4× 4 board without attacks



The N-Queens Problem

4-Queens: place 4 queens on 4× 4 board without attacks

Model 4-Queens as CSP (Constraint Model)

• Variables X1, . . . ,X4

Xi = j means “queen in column i, row j”

• Domains D(Xi ) = {1, . . . , 4} for i = 1..4

• Constraints (for different columns i and i ′)

no horizontal attack (Xi 6= Xi ′)

no attack in first diagonal (i − Xi 6= i ′ − Xi ′)

no attack in second diagonal (i + Xi 6= i ′ + Xi ′)



The N-Queens Problem

4-Queens: place 4 queens on 4× 4 board without attacks

Model 4-Queens as CSP (Constraint Model)

• Variables X1, . . . ,X4

Xi = j means “queen in column i, row j”

• Domains D(Xi ) = {1, . . . , 4} for i = 1..4

• Constraints (for different columns i and i ′)

no horizontal attack (Xi 6= Xi ′)

no attack in first diagonal (i − Xi 6= i ′ − Xi ′)

no attack in second diagonal (i + Xi 6= i ′ + Xi ′)



The N-Queens Problem

4-Queens: place 4 queens on 4× 4 board without attacks

Model 4-Queens as CSP (Constraint Model)

• Variables X1, . . . ,X4

Xi = j means “queen in column i, row j”

• Domains D(Xi ) = {1, . . . , 4} for i = 1..4

• Constraints (for different columns i and i ′)

no horizontal attack (Xi 6= Xi ′)

no attack in first diagonal (i − Xi 6= i ′ − Xi ′)

no attack in second diagonal (i + Xi 6= i ′ + Xi ′)



The N-Queens Problem

4-Queens: place 4 queens on 4× 4 board without attacks

Model 4-Queens as CSP (Constraint Model)

• Variables X1, . . . ,X4

Xi = j means “queen in column i, row j”

• Domains D(Xi ) = {1, . . . , 4} for i = 1..4

• Constraints (for different columns i and i ′)

no horizontal attack (Xi 6= Xi ′)

no attack in first diagonal (i − Xi 6= i ′ − Xi ′)

no attack in second diagonal (i + Xi 6= i ′ + Xi ′)



Solving the CSP

Generate and Test
generate assignments and test each

X1 = 1,X2 = 1,X3 = 1,X4 = 1

inconsistent!

What’s wrong with GT?

• Redundancy

• Inconsistency local!



Solving the CSP

Generate and Test
generate assignments and test each

X1 = 1,X2 = 1,X3 = 1,X4 = 1

inconsistent!

What’s wrong with GT?

• Redundancy

• Inconsistency local!



Solving the CSP

Generate and Test
generate assignments and test each

X1 = 1,X2 = 1,X3 = 1,X4 = 2

inconsistent!

What’s wrong with GT?

• Redundancy

• Inconsistency local!



Solving the CSP

Generate and Test
generate assignments and test each

X1 = 1,X2 = 1,X3 = 1,X4 = 2

inconsistent!

What’s wrong with GT?

• Redundancy

• Inconsistency local!



Solving the CSP

Generate and Test
generate assignments and test each

X1 = 1,X2 = 1,X3 = 1,X4 = 3

inconsistent!

What’s wrong with GT?

• Redundancy

• Inconsistency local!



Solving the CSP

Generate and Test
generate assignments and test each

X1 = 1,X2 = 1,X3 = 1,X4 = 3

inconsistent!

What’s wrong with GT?

• Redundancy

• Inconsistency local!



Solving the CSP

Generate and Test
generate assignments and test each

X1 = 1,X2 = 1,X3 = 1,X4 = 4

inconsistent!

What’s wrong with GT?

• Redundancy

• Inconsistency local!



Solving the CSP

Generate and Test
generate assignments and test each

X1 = 1,X2 = 1,X3 = 1,X4 = 4

inconsistent!

What’s wrong with GT?

• Redundancy

• Inconsistency local!



Solving the CSP

Generate and Test
generate assignments and test each

X1 = 1,X2 = 1,X3 = 2,X4 = 1

inconsistent!

What’s wrong with GT?

• Redundancy

• Inconsistency local!



Solving the CSP

Generate and Test
generate assignments and test each

X1 = 1,X2 = 1,X3 = 2,X4 = 1

inconsistent! . . . it’s getting boring.

What’s wrong with GT?

• Redundancy

• Inconsistency local!



Solving the CSP

Generate and Test
generate assignments and test each

X1 = 1,X2 = 1,X3 = 2,X4 = 1

inconsistent!

What’s wrong with GT?

• Redundancy

• Inconsistency local!



Solving the CSP

Generate and Test
generate assignments and test each

X1 = 1,X2 = 1,X3 = 2,X4 = 1

inconsistent!

What’s wrong with GT?

• Redundancy

• Inconsistency local!



Solving the CSP

Generate and Test
generate assignments and test each

X1 = 1,X2 = 1,X3 = 2,X4 = 1

inconsistent!

What’s wrong with GT?

• Redundancy

• Inconsistency local!



Overcoming GT’s weakness

Backtracking

Problems

• Thrashing

• Redundancy

• Late Detection of Inconsistency



Overcoming GT’s weakness

Backtracking

Problems

• Thrashing

• Redundancy

• Late Detection of Inconsistency



Overcoming GT’s weakness

Backtracking

Problems

• Thrashing

• Redundancy

• Late Detection of Inconsistency



Overcoming GT’s weakness

Backtracking

Problems

• Thrashing

• Redundancy

• Late Detection of Inconsistency



Overcoming GT’s weakness

Backtracking

Problems

• Thrashing

• Redundancy

• Late Detection of Inconsistency



CP’s Answer

Consistency Techniques

• detect inconsistency much earlier

• avoid redundancy and thrashing of BT

Definition
A consistency method transforms a CSP into an equivalent,
consistent CSP.

How we will use it
Alternate consistency transformation and enumeration



CP’s Answer

Consistency Techniques

• detect inconsistency much earlier

• avoid redundancy and thrashing of BT

Definition
A consistency method transforms a CSP into an equivalent,
consistent CSP.

How we will use it
Alternate consistency transformation and enumeration



CP’s Answer

Consistency Techniques

• detect inconsistency much earlier

• avoid redundancy and thrashing of BT

Definition
A consistency method transforms a CSP into an equivalent,
consistent CSP.

How we will use it
Alternate consistency transformation and enumeration



Node and Arc Consistency

• Idea: Find equivalent, consistent CSP by removing values
from the domains

• Examine one (basic) constraint at a time

• Node consistency: unary constraints c(X )
remove values from D(X ) that falsify c

• Arc consistency: binary constraints c(X ,Y )
remove from D(X ) values that have no support in D(Y ) such
that c is satisfied and vice versa



Node and Arc Consistency

• Idea: Find equivalent, consistent CSP by removing values
from the domains

• Examine one (basic) constraint at a time

• Node consistency: unary constraints c(X )
remove values from D(X ) that falsify c

• Arc consistency: binary constraints c(X ,Y )
remove from D(X ) values that have no support in D(Y ) such
that c is satisfied and vice versa



Node and Arc Consistency

• Idea: Find equivalent, consistent CSP by removing values
from the domains

• Examine one (basic) constraint at a time

• Node consistency: unary constraints c(X )
remove values from D(X ) that falsify c

• Arc consistency: binary constraints c(X ,Y )
remove from D(X ) values that have no support in D(Y ) such
that c is satisfied and vice versa



Node and Arc Consistency

• Idea: Find equivalent, consistent CSP by removing values
from the domains

• Examine one (basic) constraint at a time

• Node consistency: unary constraints c(X )
remove values from D(X ) that falsify c

• Arc consistency: binary constraints c(X ,Y )
remove from D(X ) values that have no support in D(Y ) such
that c is satisfied and vice versa



Node Consistency

Definition
A unary constraint c(X ) is node consistent with domain D if
X = d satisfies c(X ) for each d ∈ D(X ).

Definition
A CSP (X ,D,C ) is node consistent, iff each of the unary
constraints in C is node consistent with D.



Node Consistency Example

Our example CSP is not node consistent (see Z)

X < Y and Y < Z and Z ≤ 2

D(X ) = D(Y ) = D(Z ) = {1, 2, 3, 4}

Node consistent, equivalent CSP

X < Y and Y < Z and Z ≤ 2

D(X ) = D(Y ) = {1, 2, 3, 4},D(Z ) = {1, 2}

Remark

• The 4-Queens CSP was node consistent, why?

• Computing node consistency is easy. Just look once at each
unary constraint and remove inconsistent domain values.



Node Consistency Example

Our example CSP is not node consistent (see Z)

X < Y and Y < Z and Z ≤ 2

D(X ) = D(Y ) = D(Z ) = {1, 2, 3, 4}

Node consistent, equivalent CSP

X < Y and Y < Z and Z ≤ 2

D(X ) = D(Y ) = {1, 2, 3, 4},D(Z ) = {1, 2}

Remark

• The 4-Queens CSP was node consistent, why?

• Computing node consistency is easy. Just look once at each
unary constraint and remove inconsistent domain values.



Arc Consistency

Definition
A binary constraint c(X ,Y ) is arc consistent with domain D if

• for each dX ∈ D(X ) there is a dY ∈ D(Y ) s.t. c(dX , dY )

• vice versa (for each dY ∈ D(Y ) there is a dX ∈ D(X ) s.t. c(dX , dY ))

Definition
A CSP (X ,D,C ) is arc consistent, iff each of the binary
constraints in C is arc consistent with D.



Arc Consistency Example

The following CSP is node consistent but not arc consistent

X < Y and Y < Z and Z ≤ 2

D(X ) = D(Y ) = {1, 2, 3, 4},D(Z ) = {1, 2}

For example 4 ∈ D(Y ) and Y < Z
Arc consistent, equivalent CSP

X < Y and Y < Z and Z ≤ 2

D(X ) = D(Y ) = D(Z ) = {}

Remark
Our 4-Queens CSP is arc consistent.



Arc Consistency Example

The following CSP is node consistent but not arc consistent

X < Y and Y < Z and Z ≤ 2

D(X ) = D(Y ) = {1, 2, 3, 4},D(Z ) = {1, 2}

For example 4 ∈ D(Y ) and Y < Z
Arc consistent, equivalent CSP

X < Y and Y < Z and Z ≤ 2

D(X ) = D(Y ) = D(Z ) = {}

Remark
Our 4-Queens CSP is arc consistent.



Computing Arc Consistency

procedure REVISE(c ,X ,Y ,D)
D(X ) := { dX ∈ D(X ) such that there exists dY ∈ D(Y )

where c(dX , dY ) is satisfied }
endproc

do

D ′ := D
foreach binary constraint c ∈ C do

let X ,Y denote the variables of c
REVISE(c ,X ,Y ,D)

REVISE(c ,Y ,X ,D)

done

until D = D ′

Remark
This algorithm is called AC-1, usually one uses improved variants
of this algorithm (e.g. AC-3).



Computing Arc Consistency

procedure REVISE(c ,X ,Y ,D)
D(X ) := { dX ∈ D(X ) such that there exists dY ∈ D(Y )

where c(dX , dY ) is satisfied }
endproc

do

D ′ := D
foreach binary constraint c ∈ C do

let X ,Y denote the variables of c
REVISE(c ,X ,Y ,D)

REVISE(c ,Y ,X ,D)

done

until D = D ′

Remark
This algorithm is called AC-1, usually one uses improved variants
of this algorithm (e.g. AC-3).



Computing Arc Consistency

procedure REVISE(c ,X ,Y ,D)
D(X ) := { dX ∈ D(X ) such that there exists dY ∈ D(Y )

where c(dX , dY ) is satisfied }
endproc

do

D ′ := D
foreach binary constraint c ∈ C do

let X ,Y denote the variables of c
REVISE(c ,X ,Y ,D)

REVISE(c ,Y ,X ,D)

done

until D = D ′

Remark
This algorithm is called AC-1, usually one uses improved variants
of this algorithm (e.g. AC-3).



Avoiding Redundant Work: AC-3

Q :=empty queue

foreach binary constraint c ∈ C do

push Q, (c ,X ,Y )
push Q, (c ,Y ,X )

done

while Q 6=empty queue do

(c,X,Y) := pop Q
D’:=D(X)

REVISE(c ,X ,Y ,D)

if D(X ) 6= D ′ then

for c ′∈C and Z ∈X where c ′(X ,Z ) or c ′(Z ,X ) do

push Q, (c ′,Z ,X )
done

endif

done



Node/Arc vs. Global Consistency

1,2

1,2

1,2

X = {X ,Y ,Z}
D(X ) = D(Y ) = D(Z ) = {1, 2}
C = {X 6= Y ,Y 6= Z ,Z 6= X}

• The CSP is node and arc consistent

• The CSP is globally inconsistent



Node/Arc vs. Global Consistency

1,2

1,2

1,2

X = {X ,Y ,Z}
D(X ) = D(Y ) = D(Z ) = {1, 2}
C = {X 6= Y ,Y 6= Z ,Z 6= X}

• The CSP is node and arc consistent

• The CSP is globally inconsistent



Consistency Methods: Summary

• Computing local consistency = constraint propagation
• Node consistency
• Arc consistency
• (Hyper-arc consistency)
• (Bounds consistency)

• Propagation is incomplete

• Solving a CSP requires search
Combine backtracking and propagation

Complexity

• Local consistency: efficient

• CSP solving/global consistency: NP-complete



Consistency Methods: Summary

• Computing local consistency = constraint propagation
• Node consistency
• Arc consistency
• (Hyper-arc consistency)
• (Bounds consistency)

• Propagation is incomplete

• Solving a CSP requires search
Combine backtracking and propagation

Complexity

• Local consistency: efficient

• CSP solving/global consistency: NP-complete



Consistency Methods: Summary

• Computing local consistency = constraint propagation
• Node consistency
• Arc consistency
• (Hyper-arc consistency)
• (Bounds consistency)

• Propagation is incomplete

• Solving a CSP requires search
Combine backtracking and propagation

Complexity

• Local consistency: efficient

• CSP solving/global consistency: NP-complete



Consistency Methods: Summary

• Computing local consistency = constraint propagation
• Node consistency
• Arc consistency
• (Hyper-arc consistency)
• (Bounds consistency)

• Propagation is incomplete

• Solving a CSP requires search
Combine backtracking and propagation

Complexity

• Local consistency: efficient

• CSP solving/global consistency: NP-complete



Solving 4-Queens (with Constraint Propagation)

X1, . . . ,X4

D(Xi ) = {1, . . . , 4} for i = 1..4

Xi 6= Xi ′ , i − Xi 6= i ′ − Xi ′ , i + Xi 6= i ′ + Xi ′



Solving 4-Queens, X1 = 1

X1, . . . ,X4

D(Xi ) = {1, . . . , 4} for i = 1..4

Xi 6= Xi ′ , i − Xi 6= i ′ − Xi ′ , i + Xi 6= i ′ + Xi ′



Solving 4-Queens, X1 = 1

X1, . . . ,X4

D(X1) = {1},D(Xi ) = {1, . . . , 4} for i = 2..4

Xi 6= Xi ′ , i − Xi 6= i ′ − Xi ′ , i + Xi 6= i ′ + Xi ′



Solving 4-Queens, X1 = 1

X1, . . . ,X4

D(X1) = {1},D(X2) = {3, 4},D(X3) = {2, 4},D(X4) = {2, 3}

Xi 6= Xi ′ , i − Xi 6= i ′ − Xi ′ , i + Xi 6= i ′ + Xi ′



Solving 4-Queens, X1 = 1

X1, . . . ,X4

D(X1) = {1},D(X2) = {3, 4},D(X3) = {4},D(X4) = {2, 3}

Xi 6= Xi ′ , i − Xi 6= i ′ − Xi ′ , i + Xi 6= i ′ + Xi ′



Solving 4-Queens, X1 = 1

X1, . . . ,X4

D(X1) = {1},D(X2) = {3, 4},D(X3) = {},D(X4) = {2, 3}

Xi 6= Xi ′ , i − Xi 6= i ′ − Xi ′ , i + Xi 6= i ′ + Xi ′



Solving 4-Queens, X1 = 2

X1, . . . ,X4

D(Xi ) = {1, . . . , 4} for i = 1..4

Xi 6= Xi ′ , i − Xi 6= i ′ − Xi ′ , i + Xi 6= i ′ + Xi ′



Solving 4-Queens, X1 = 2

X1, . . . ,X4

D(X1) = {2},D(Xi ) = {1, . . . , 4} for i = 2..4

Xi 6= Xi ′ , i − Xi 6= i ′ − Xi ′ , i + Xi 6= i ′ + Xi ′



Solving 4-Queens, X1 = 2

X1, . . . ,X4

D(X1) = {2},D(X2) = {4},D(X3) = {1, 3},D(X4) = {1, 3, 4}

Xi 6= Xi ′ , i − Xi 6= i ′ − Xi ′ , i + Xi 6= i ′ + Xi ′



Solving 4-Queens, X1 = 2

X1, . . . ,X4

D(X1) = {2},D(X2) = {4},D(X3) = {1},D(X4) = {3, 4}

Xi 6= Xi ′ , i − Xi 6= i ′ − Xi ′ , i + Xi 6= i ′ + Xi ′



Solving 4-Queens, X1 = 2

X1, . . . ,X4

D(X1) = {2},D(X2) = {4},D(X3) = {1},D(X4) = {3}

Xi 6= Xi ′ , i − Xi 6= i ′ − Xi ′ , i + Xi 6= i ′ + Xi ′



Constraint Search

• Combine Enumeration (backtracking) with propagation

• In general: enumeration by binary splits

• Usually, we insert constraints of the form

X � V , � ∈ {=,≤,≥, . . . }

• Variable and value selection important!
• for size of search tree
• not for completeness/correctness



Constraint Search

• Combine Enumeration (backtracking) with propagation

• In general: enumeration by binary splits

• Usually, we insert constraints of the form

X � V , � ∈ {=,≤,≥, . . . }

• Variable and value selection important!
• for size of search tree
• not for completeness/correctness



Constraint Search

• Combine Enumeration (backtracking) with propagation

• In general: enumeration by binary splits

• Usually, we insert constraints of the form

X � V , � ∈ {=,≤,≥, . . . }

• Variable and value selection important!
• for size of search tree
• not for completeness/correctness



Constraint Search

• Combine Enumeration (backtracking) with propagation

• In general: enumeration by binary splits

• Usually, we insert constraints of the form

X � V , � ∈ {=,≤,≥, . . . }

• Variable and value selection important!
• for size of search tree
• not for completeness/correctness



Symmetry

A symmetry is a (bijective) function on solutions.
This implies a symmetry function on constraints.



Symmetry

A symmetry is a (bijective) function on solutions.
This implies a symmetry function on constraints.



Symmetry

A symmetry is a (bijective) function on solutions.
This implies a symmetry function on constraints.



Symmetry Breaking Search

• Each right branch: forbid symmetries of the left branch

• By inserting a symmetric constraints for each symmetry



Constraint Optimization

Definition
A Constraint Optimization Problem (COP) is a CSP together with
an objective function f on solutions.
A solution of the COP is a solution of the CSP that
maximizes/minimizes f .

Solving by Branch & Bound Search
Idea of B&B:

• Backtrack & Propagate as for solving the CSP

• Whenever a solution s is found, add constraint
“next solutions must be better than f (s)”.



Constraint Optimization Example: Photo Problem

Alice,Bob,Carol, and Dave want to align for a photo
For example: Alice, Carol, Dave, Bob

However, they have preferences:

• Alice wants to stand next to Dave

• Bob wants to stand next to Dave and Carol

• Carol wants to stand next to Alice

Satisfy as many preferences as possible by constraint optimization.



Constraint Optimization Example: Photo Problem

Alice,Bob,Carol, and Dave want to align for a photo
For example: Alice, Carol, Dave, Bob

However, they have preferences:

• Alice wants to stand next to Dave

• Bob wants to stand next to Dave and Carol

• Carol wants to stand next to Alice

Satisfy as many preferences as possible by constraint optimization.


	Constraints
	Constraint Programming
	Propagation and Consistency
	Constraint Search

	Exact Prediction
	Overview
	A First Model
	The Advanced Approach
	Bound on Contacts
	Core Construction
	Mapping Sequences to Cores
	Results


