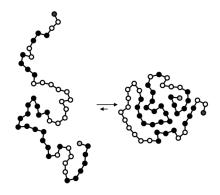
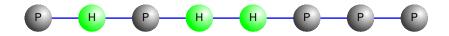
Can we predict protein structure?

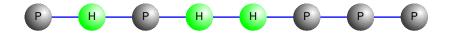


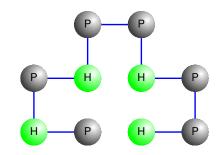
- Molecular Dynamics on Full Atom Models
- Simpler Protein Models:
 - Folding simulation
 - Stochastic optimization, e.g. Genetic Algorithms
 - Combinatorial optimization, e.g. Constraint Programming

Simple Proteins: HP-Model

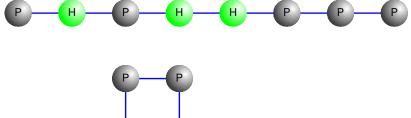


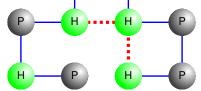
Simple Proteins: HP-Model





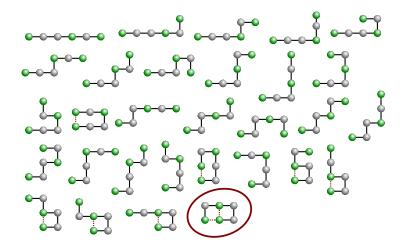
Simple Proteins: HP-Model





Structures in the HP-Model

Sequence HPPHPH



Constraint Programming

Constraint programming ...

- ... is a programming technique
- ... describes what rather than how
- ... i.e. it is declarative
- ... combines logic reasoning with search
- ... performs "intelligent" enumeration
- . . . "slays NP-hard dragons"

Example: Map Coloring

Constraints: $A, C, D, I, S \in \{red, green, blue\},$ $A \neq C, A \neq D, A \neq I, A \neq S,$ $C \neq D, C \neq I, I \neq S$

- We say only what a solution of the map coloring is
- We need not care how the problem is solved
- A solution is computed by guessing and reasoning E.g. guess A = red implies C, D, I, S ≠ red; then guess C = green ...

Example: Map Coloring

Constraints: $A, C, D, I, S \in \{red, green, blue\},$ $A \neq C, A \neq D, A \neq I, A \neq S,$ $C \neq D, C \neq I, I \neq S$

- We say only what a solution of the map coloring is
- We need not care how the problem is solved
- A solution is computed by guessing and reasoning E.g. guess A = red implies C, D, I, S ≠ red; then guess C = green ...

Example: Map Coloring

Constraints: $A, C, D, I, S \in \{red, green, blue\},\$ $A \neq C, A \neq D, A \neq I, A \neq S,\$ $C \neq D, C \neq I, I \neq S$

- We say only what a solution of the map coloring is
- We need not care how the problem is solved
- A solution is computed by guessing and reasoning E.g. guess A = red implies C, D, I, S ≠ red; then guess C = green ...

Example: Map Coloring

Constraints: $A, C, D, I, S \in \{red, green, blue\},\$ $A \neq C, A \neq D, A \neq I, A \neq S,\$ $C \neq D, C \neq I, I \neq S$

- We say only what a solution of the map coloring is
- We need not care how the problem is solved
- A solution is computed by guessing and reasoning E.g. guess A = red implies C, D, I, S ≠ red; then guess C = green ...

Example: Map Coloring

Constraints: $A, C, D, I, S \in \{red, green, blue\},\$ $A \neq C, A \neq D, A \neq I, A \neq S,\$ $C \neq D, C \neq I, I \neq S$

- We say only what a solution of the map coloring is
- We need not care how the problem is solved
- A solution is computed by guessing and reasoning E.g. guess A = red implies C, D, I, S ≠ red; then guess C = green ...

Example: Map Coloring

Constraints: $A, C, D, I, S \in \{red, green, blue\},\$ $A \neq C, A \neq D, A \neq I, A \neq S,\$ $C \neq D, C \neq I, I \neq S$

- We say only what a solution of the map coloring is
- We need not care how the problem is solved
- A solution is computed by guessing and reasoning E.g. guess A = red implies C, D, I, S ≠ red; then guess C = green ...

Example

A mathematician forgot the last position of a number code. She only remembers

- it's odd
- of course, its a digit, i.e. in [0..9]
- it's no prime number and not 1.

She can derive the digit (by constraint reasoning)!

Example

A mathematician forgot the last position of a number code. She only remembers

- it's odd
- of course, its a digit, i.e. in [0..9]
- it's no prime number and not 1.

She can derive the digit (by constraint reasoning)!

Commercial Impact of Constraints

Some examples

Michelin and Dassault, Renault	Production planning	
Lufthansa, Swiss Air,	Staff planning	
Nokia	Software configuration	
Siemens	Circuit verification	
French National Railway Company	Train schedule	

Constraint Satisfaction Problem (CSP)

Definition

A Constraint Satisfaction Problem (CSP) consists of

- variables $\mathcal{X} = \{X_1, \ldots, X_n\}$,
- the domain D that associates finite domains $D_1 = D(X_1), \ldots, D_n = D(X_n)$ to \mathcal{X} .
- a set of constraints C.

A solution is an assignment of variables to values of their domains that satisfies the constraints.

Constraint Satisfaction Problem (CSP)

Definition

A Constraint Satisfaction Problem (CSP) consists of

- variables $\mathcal{X} = \{X_1, \ldots, X_n\}$,
- the domain D that associates finite domains $D_1 = D(X_1), \ldots, D_n = D(X_n)$ to \mathcal{X} .
- a set of constraints C.

A solution is an assignment of variables to values of their domains that satisfies the constraints.

Constraint Satisfaction Problem (CSP)

Definition

A Constraint Satisfaction Problem (CSP) consists of

- variables $\mathcal{X} = \{X_1, \ldots, X_n\}$,
- the domain D that associates finite domains $D_1 = D(X_1), \ldots, D_n = D(X_n)$ to \mathcal{X} .
- a set of constraints C.

A solution is an assignment of variables to values of their domains that satisfies the constraints.

We have already seen one example: map coloring.

A Simple Example CSP

- Variables $\mathcal{X} = \{X, Y, Z\}$
- Domains $D(X) = D(Y) = D(Z) = \{1, 2, 3, 4\}$
- Constraints $C = \{X < Y, Y < Z, Z \le 2\}$

Remarks

• The constraint set is interpreted as the conjunction

X < Y and Y < Z and $Z \leq 2$.

• The domains are interpreted as the constraint

 $X \in D(X)$ and $Y \in D(Y)$ and $Z \in D(Z)$.

A Simple Example CSP

- Variables $\mathcal{X} = \{X, Y, Z\}$
- Domains $D(X) = D(Y) = D(Z) = \{1, 2, 3, 4\}$
- Constraints $C = \{X < Y, Y < Z, Z \le 2\}$

Remarks

• The constraint set is interpreted as the conjunction

X < Y and Y < Z and $Z \leq 2$.

• The domains are interpreted as the constraint

 $X \in D(X)$ and $Y \in D(Y)$ and $Z \in D(Z)$.

A Simple Example CSP

• Variables
$$\mathcal{X} = \{X, Y, Z\}$$

- Domains $D(X) = D(Y) = D(Z) = \{1, 2, 3, 4\}$
- Constraints $C = \{X < Y, Y < Z, Z \le 2\}$

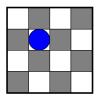
Remarks

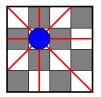
• The constraint set is interpreted as the conjunction

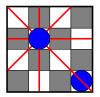
$$X < Y$$
 and $Y < Z$ and $Z \leq 2$.

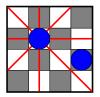
• The domains are interpreted as the constraint

$$X \in D(X)$$
 and $Y \in D(Y)$ and $Z \in D(Z)$.









4-Queens: place 4 queens on 4×4 board without attacks

Model 4-Queens as CSP (Constraint Model)

- Variables X_1, \dots, X_4 $X_i = i$ means "gueen in column i, row i"
- Domains $D(X_i) = \{1, ..., 4\}$ for i = 1..4
- Constraints (for different columns *i* and *i'*) no horizontal attack $(X_i \neq X_{i'})$ no attack in first diagonal $(i - X_i \neq i' - X_{i'})$ no attack in second diagonal $(i + X_i \neq i' + X_{i'})$

4-Queens: place 4 queens on 4×4 board without attacks

Model 4-Queens as CSP (Constraint Model)

- Variables X_1, \ldots, X_4 $X_i = j$ means "queen in column i, row j"
- Domains $D(X_i) = \{1, ..., 4\}$ for i = 1..4
- Constraints (for different columns *i* and *i*')

no horizontal attack $(X_i \neq X_{i'})$

no attack in first diagonal $(i - X_i \neq i' - X_{i'})$

no attack in second diagonal $(i + X_i \neq i' + X_{i'})$

4-Queens: place 4 queens on 4×4 board without attacks

Model 4-Queens as CSP (Constraint Model)

- Variables X_1, \dots, X_4 $X_i = j$ means "queen in column i, row j"
- Domains $D(X_i) = \{1, ..., 4\}$ for i = 1..4

• Constraints (for different columns *i* and *i'*)

no horizontal attack $(X_i \neq X_{i'})$

no attack in first diagonal $(i - X_i \neq i' - X_{i'})$

no attack in second diagonal $(i + X_i \neq i' + X_{i'})$

4-Queens: place 4 queens on 4×4 board without attacks

Model 4-Queens as CSP (Constraint Model)

- Variables X_1, \dots, X_4 $X_j = j$ means "queen in column i, row j"
- Domains $D(X_i) = \{1, ..., 4\}$ for i = 1..4
- Constraints (for different columns *i* and *i*')

no horizontal attack $(X_i \neq X_{i'})$

no attack in first diagonal $(i - X_i \neq i' - X_{i'})$

no attack in second diagonal $(i + X_i \neq i' + X_{i'})$

Generate and Test

generate assignments and test each

$$X_1 = 1, X_2 = 1, X_3 = 1, X_4 = 1$$

inconsistent!

- Redundancy
- Inconsistency local!

Generate and Test

generate assignments and test each

$$X_1 = 1, X_2 = 1, X_3 = 1, X_4 = 1$$

inconsistent!

- Redundancy
- Inconsistency local!

Generate and Test

generate assignments and test each

$$X_1 = 1, X_2 = 1, X_3 = 1, X_4 = 2$$

inconsistent!

- Redundancy
- Inconsistency local!

Generate and Test

generate assignments and test each

$$X_1 = 1, X_2 = 1, X_3 = 1, X_4 = 2$$

inconsistent!

- Redundancy
- Inconsistency local!

Generate and Test

generate assignments and test each

$$X_1 = 1, X_2 = 1, X_3 = 1, X_4 = 3$$

inconsistent!

- Redundancy
- Inconsistency local!

Generate and Test

generate assignments and test each

$$X_1 = 1, X_2 = 1, X_3 = 1, X_4 = 3$$

inconsistent!

- Redundancy
- Inconsistency local!

Generate and Test

generate assignments and test each

$$X_1 = 1, X_2 = 1, X_3 = 1, X_4 = 4$$

inconsistent!

- Redundancy
- Inconsistency local!

Generate and Test

generate assignments and test each

$$X_1 = 1, X_2 = 1, X_3 = 1, X_4 = 4$$

inconsistent!

- Redundancy
- Inconsistency local!

Generate and Test

generate assignments and test each

$$X_1 = 1, X_2 = 1, X_3 = 2, X_4 = 1$$

inconsistent!

- Redundancy
- Inconsistency local!

Generate and Test

generate assignments and test each

$$X_1 = 1, X_2 = 1, X_3 = 2, X_4 = 1$$

inconsistent! ...it's getting boring.

- Redundancy
- Inconsistency local!

Generate and Test

generate assignments and test each

$$X_1 = 1, X_2 = 1, X_3 = 2, X_4 = 1$$

inconsistent!

- Redundancy
- Inconsistency local!

Generate and Test

generate assignments and test each

$$X_1 = 1, X_2 = 1, X_3 = 2, X_4 = 1$$

inconsistent!

- Redundancy
- Inconsistency local!

Generate and Test

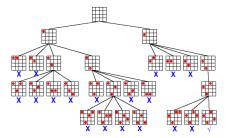
generate assignments and test each

$$X_1 = 1, X_2 = 1, X_3 = 2, X_4 = 1$$

inconsistent!

- Redundancy
- Inconsistency local!

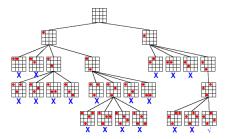
Backtracking



Problems

- Thrashing
- Redundancy
- Late Detection of Inconsistency

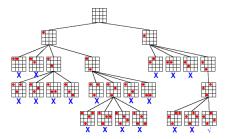
Backtracking



Problems

- Thrashing
- Redundancy
- Late Detection of Inconsistency

Backtracking



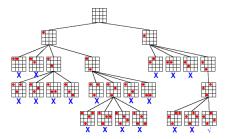
Problems

Thrashing

Redundancy

• Late Detection of Inconsistency

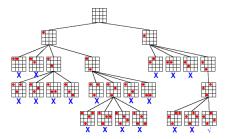
Backtracking



Problems

- Thrashing
- Redundancy
- Late Detection of Inconsistency

Backtracking



Problems

- Thrashing
- Redundancy
- Late Detection of Inconsistency

CP's Answer

Consistency Techniques

- detect inconsistency much earlier
- avoid redundancy and thrashing of BT

Definition

A consistency method transforms a CSP into an equivalent, consistent CSP.

How we will use it

Alternate consistency transformation and enumeration

CP's Answer

Consistency Techniques

- · detect inconsistency much earlier
- avoid redundancy and thrashing of BT

Definition

A consistency method transforms a CSP into an equivalent, consistent CSP.

How we will use it

Alternate consistency transformation and enumeration

CP's Answer

Consistency Techniques

- · detect inconsistency much earlier
- avoid redundancy and thrashing of BT

Definition

A consistency method transforms a CSP into an equivalent, consistent CSP.

How we will use it

Alternate consistency transformation and enumeration

- Idea: Find equivalent, consistent CSP by removing values from the domains
- Examine one (basic) constraint at a time
- Node consistency: unary constraints c(X) remove values from D(X) that falsify c
- Arc consistency: binary constraints c(X, Y) remove from D(X) values that have no support in D(Y) such that c is satisfied and vice versa

- Idea: Find equivalent, consistent CSP by removing values from the domains
- Examine one (basic) constraint at a time
- Node consistency: unary constraints c(X) remove values from D(X) that falsify c
- Arc consistency: binary constraints c(X, Y) remove from D(X) values that have no support in D(Y) such that c is satisfied and vice versa

- Idea: Find equivalent, consistent CSP by removing values from the domains
- Examine one (basic) constraint at a time
- Node consistency: unary constraints c(X) remove values from D(X) that falsify c
- Arc consistency: binary constraints c(X, Y) remove from D(X) values that have no support in D(Y) such that c is satisfied and vice versa

- Idea: Find equivalent, consistent CSP by removing values from the domains
- Examine one (basic) constraint at a time
- Node consistency: unary constraints c(X) remove values from D(X) that falsify c
- Arc consistency: binary constraints c(X, Y) remove from D(X) values that have no support in D(Y) such that c is satisfied and vice versa

Node Consistency

Definition

A unary constraint c(X) is node consistent with domain D if X = d satisfies c(X) for each $d \in D(X)$.

Definition

A CSP (\mathcal{X}, D, C) is node consistent, iff each of the unary constraints in C is node consistent with D.

Node Consistency Example

Our example CSP is not node consistent (see Z)

$$X < Y$$
 and $Y < Z$ and $Z \le 2$
 $D(X) = D(Y) = D(Z) = \{1, 2, 3, 4\}$

Node consistent, equivalent CSP

$$X < Y$$
 and $Y < Z$ and $Z \le 2$
 $D(X) = D(Y) = \{1, 2, 3, 4\}, D(Z) = \{1, 2\}$

Remark

- The 4-Queens CSP was node consistent, why?
- Computing node consistency is easy. Just look once at each unary constraint and remove inconsistent domain values.

Node Consistency Example

Our example CSP is not node consistent (see Z)

$$X < Y$$
 and $Y < Z$ and $Z \le 2$
 $D(X) = D(Y) = D(Z) = \{1, 2, 3, 4\}$

Node consistent, equivalent CSP

$$X < Y$$
 and $Y < Z$ and $Z \le 2$
 $D(X) = D(Y) = \{1, 2, 3, 4\}, D(Z) = \{1, 2\}$

Remark

- The 4-Queens CSP was node consistent, why?
- Computing node consistency is easy. Just look once at each unary constraint and remove inconsistent domain values.

Arc Consistency

Definition

A binary constraint c(X, Y) is arc consistent with domain D if

- for each $d_X \in D(X)$ there is a $d_Y \in D(Y)$ s.t. $c(d_X, d_Y)$
- vice versa (for each $d_Y \in D(Y)$ there is a $d_X \in D(X)$ s.t. $c(d_X, d_Y)$)

Definition

A CSP (\mathcal{X}, D, C) is arc consistent, iff each of the binary constraints in C is arc consistent with D.

Arc Consistency Example

The following CSP is node consistent but not arc consistent

$$X < Y$$
 and $Y < Z$ and $Z \le 2$
 $D(X) = D(Y) = \{1, 2, 3, 4\}, D(Z) = \{1, 2\}$

For example $4 \in D(Y)$ and Y < ZArc consistent, equivalent CSP

$$X < Y$$
 and $Y < Z$ and $Z \le 2$
 $D(X) = D(Y) = D(Z) = \{\}$

Remark Our 4-Queens CSP is arc consistent.

Arc Consistency Example

The following CSP is node consistent but not arc consistent

$$X < Y$$
 and $Y < Z$ and $Z \le 2$
 $D(X) = D(Y) = \{1, 2, 3, 4\}, D(Z) = \{1, 2\}$

For example $4 \in D(Y)$ and Y < ZArc consistent, equivalent CSP

$$X < Y$$
 and $Y < Z$ and $Z \le 2$
 $D(X) = D(Y) = D(Z) = \{\}$

Remark

Our 4-Queens CSP is arc consistent.

Computing Arc Consistency

procedure REVISE(c, X, Y, D) $D(X) := \{ d_X \in D(X) \text{ such that there exists } d_Y \in D(Y)$ where $c(d_X, d_Y)$ is satisfied $\}$

endproc

do

D' := D

foreach binary constraint $c \in C$ do

let X, Y denote the variables of c

 $\operatorname{REVISE}(c, X, Y, D)$

 $\operatorname{REVISE}(C, Y)$

done

until D = D'

Remark

This algorithm is called AC-1, usually one uses improved variants of this algorithm (e.g. AC-3).

Computing Arc Consistency

```
\begin{array}{l} \textbf{procedure } \texttt{REVISE}(c,X,Y,D) \\ D(X) := \{ \, d_X \in D(X) \, \, \texttt{such that there exists} \, \, d_Y \in D(Y) \\ & \quad \texttt{where } \, c(d_X,d_Y) \, \, \texttt{is satisfied} \, \} \end{array}
```

endproc

do

D' := Dforeach binary constraint $c \in C$ do let X, Y denote the variables of cREVISE(c, X, Y, D)REVISE(c, Y, X, D)done

until D = D'

Remark

This algorithm is called AC-1, usually one uses improved variants of this algorithm (e.g. AC-3).

Computing Arc Consistency

```
procedure REVISE(c, X, Y, D)

D(X) := \{ d_X \in D(X) \text{ such that there exists } d_Y \in D(Y)

where c(d_X, d_Y) is satisfied \}

endproc

do

D' := D

foreach binary constraint c \in C do
```

let X, Y denote the variables of cREVISE(c, X, Y, D)REVISE(c, Y, X, D)

done

until D = D'

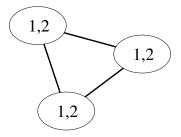
Remark

This algorithm is called AC-1, usually one uses improved variants of this algorithm (e.g. AC-3).

Avoiding Redundant Work: AC-3

```
Q := empty queue
foreach binary constraint c \in C do
  push Q, (c, X, Y)
  push Q, (c, Y, X)
done
while Q \neq \text{empty} queue do
  (c, X, Y) := pop Q
  D' := D(X)
  REVISE(c, X, Y, D)
  if D(X) \neq D' then
    for c' \in C and Z \in \mathcal{X} where c'(X, Z) or c'(Z, X) do
       push Q, (c', Z, X)
    done
  endif
done
```

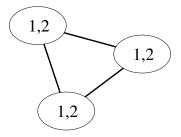
Node/Arc vs. Global Consistency



$$\mathcal{X} = \{X, Y, Z\}$$
$$D(X) = D(Y) = D(Z) = \{1, 2\}$$
$$C = \{X \neq Y, Y \neq Z, Z \neq X\}$$

- The CSP is node and arc consistent
- The CSP is globally inconsistent

Node/Arc vs. Global Consistency



$$\mathcal{X} = \{X, Y, Z\}$$
$$D(X) = D(Y) = D(Z) = \{1, 2\}$$
$$C = \{X \neq Y, Y \neq Z, Z \neq X\}$$

- The CSP is node and arc consistent
- The CSP is globally inconsistent

- Computing local consistency = constraint propagation
 - Node consistency
 - Arc consistency
 - (Hyper-arc consistency)
 - (Bounds consistency)
- Propagation is incomplete
- Solving a CSP requires search Combine backtracking and propagation

- Local consistency: efficient
- CSP solving/global consistency: NP-complete

- Computing local consistency = constraint propagation
 - Node consistency
 - Arc consistency
 - (Hyper-arc consistency)
 - (Bounds consistency)
- Propagation is incomplete
- Solving a CSP requires search Combine backtracking and propagation

- Local consistency: efficient
- CSP solving/global consistency: NP-complete

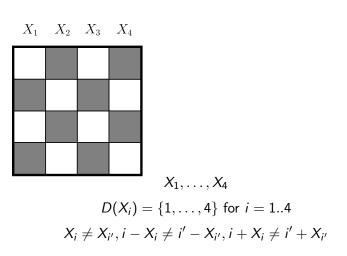
- Computing local consistency = constraint propagation
 - Node consistency
 - Arc consistency
 - (Hyper-arc consistency)
 - (Bounds consistency)
- Propagation is incomplete
- Solving a CSP requires search Combine backtracking and propagation

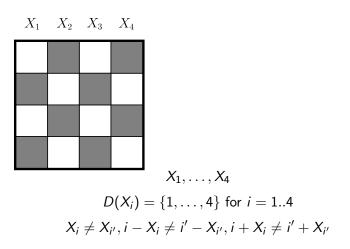
- Local consistency: efficient
- CSP solving/global consistency: NP-complete

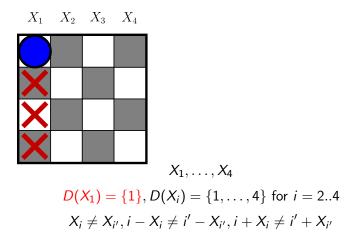
- Computing local consistency = constraint propagation
 - Node consistency
 - Arc consistency
 - (Hyper-arc consistency)
 - (Bounds consistency)
- Propagation is incomplete
- Solving a CSP requires search Combine backtracking and propagation

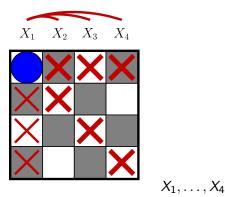
- Local consistency: efficient
- CSP solving/global consistency: NP-complete

Solving 4-Queens (with Constraint Propagation)

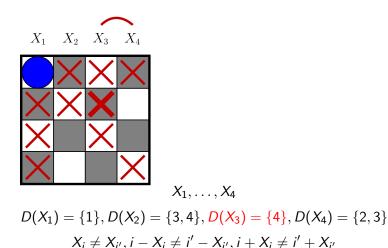


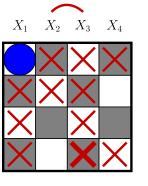






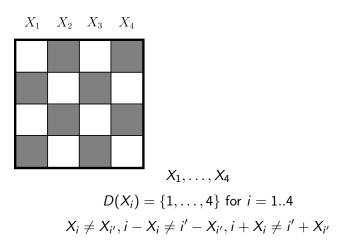
 $D(X_1) = \{1\}, D(X_2) = \{3, 4\}, D(X_3) = \{2, 4\}, D(X_4) = \{2, 3\}$ $X_i \neq X_{i'}, i - X_i \neq i' - X_{i'}, i + X_i \neq i' + X_{i'}$

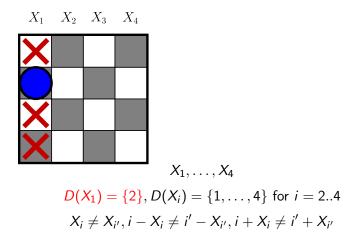


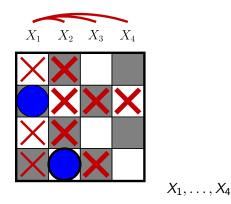


 X_1,\ldots,X_4

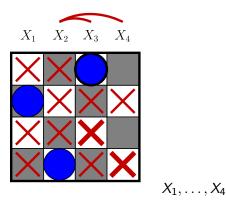
 $D(X_1) = \{1\}, D(X_2) = \{3, 4\}, \frac{D(X_3)}{D(X_3)} = \{\}, D(X_4) = \{2, 3\}$ $X_i \neq X_{i'}, i - X_i \neq i' - X_{i'}, i + X_i \neq i' + X_{i'}$



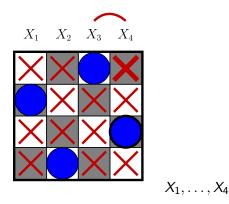




 $D(X_1) = \{2\}, D(X_2) = \{4\}, D(X_3) = \{1, 3\}, D(X_4) = \{1, 3, 4\}$ $X_i \neq X_{i'}, i - X_i \neq i' - X_{i'}, i + X_i \neq i' + X_{i'}$

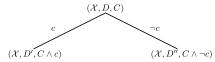


 $D(X_1) = \{2\}, D(X_2) = \{4\}, D(X_3) = \{1\}, D(X_4) = \{3, 4\}$ $X_i \neq X_{i'}, i - X_i \neq i' - X_{i'}, i + X_i \neq i' + X_{i'}$



 $D(X_1) = \{2\}, D(X_2) = \{4\}, D(X_3) = \{1\}, \frac{D(X_4)}{i} = \{3\}$ $X_i \neq X_{i'}, i - X_i \neq i' - X_{i'}, i + X_i \neq i' + X_{i'}$

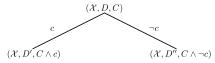
- Combine Enumeration (backtracking) with propagation
- In general: enumeration by binary splits



$$X \diamond V, \qquad \diamond \in \{=, \leq, \geq, \dots\}$$

- Variable and value selection important!
 - for size of search tree
 - not for completeness/correctness

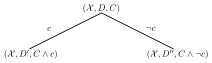
- Combine Enumeration (backtracking) with propagation
- In general: enumeration by binary splits



$$X \diamond V, \qquad \diamond \in \{=, \leq, \geq, \dots\}$$

- Variable and value selection important!
 - for size of search tree
 - not for completeness/correctness

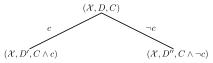
- Combine Enumeration (backtracking) with propagation
- In general: enumeration by binary splits



$$X \diamond V, \qquad \diamond \in \{=, \leq, \geq, \dots\}$$

- Variable and value selection important!
 - for size of search tree
 - not for completeness/correctness

- Combine Enumeration (backtracking) with propagation
- In general: enumeration by binary splits



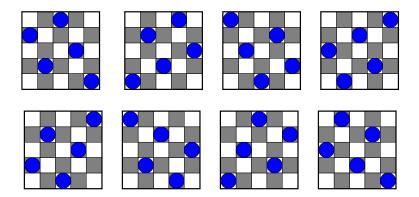
$$X \diamond V, \qquad \diamond \in \{=, \leq, \geq, \dots\}$$

- Variable and value selection important!
 - for size of search tree
 - not for completeness/correctness

Symmetry

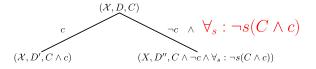
Symmetry

Symmetry



A symmetry is a (bijective) function on solutions. This implies a symmetry function on constraints.

Symmetry Breaking Search



- Each right branch: forbid symmetries of the left branch
- By inserting a symmetric constraints for each symmetry

Constraint Optimization

Definition

A Constraint Optimization Problem (COP) is a CSP together with an objective function f on solutions.

A solution of the COP is a solution of the CSP that maximizes/minimizes f.

Solving by Branch & Bound Search Idea of B&B:

- Backtrack & Propagate as for solving the CSP
- Whenever a solution *s* is found, add constraint "next solutions must be better than *f*(*s*)".

Constraint Optimization Example: Photo Problem

Alice,Bob,Carol, and Dave want to align for a photo For example: <u>Alice, Carol, Dave, Bob</u>

However, they have preferences:

- Alice wants to stand next to Dave
- Bob wants to stand next to Dave and Carol
- Carol wants to stand next to Alice

Satisfy as many preferences as possible by constraint optimization.

Constraint Optimization Example: Photo Problem

Alice,Bob,Carol, and Dave want to align for a photo For example: <u>Alice, Carol, Dave, Bob</u>

However, they have preferences:

- Alice wants to stand next to Dave
- Bob wants to stand next to Dave and Carol
- Carol wants to stand next to Alice

Satisfy as many preferences as possible by constraint optimization.