Motif finding as an application of the EM-algorithm

Axel Wintsche

November 25, 2011

Axel Wintsche

given sequence S = ACCAGATprobability P(S) = ?

Axel Wintsche Motif finding as an application of the EM-algorithm

given sequence	S = ACCAGAT
probability	P(S) = ?
for example	P(S) = P(A)P(C)P(C)P(A)P(G)P(A)P(T)

given sequence
$$S = ACCAGAT$$
probability $P(S) = ?$ for example $P(S) = P(A)P(C)P(C)P(A)P(G)P(A)P(T)$

if
$$P(A) = P(C) = P(G) = P(T) = 0.25$$

then $P(S) = 0.25^7 = 6.1035 \times 10^{-5}$

given sequence
$$S = ACCAGAT$$
probability $P(S) = ?$ for example $P(S) = P(A)P(C)P(C)P(A)P(G)P(A)P(T)$

if
$$P(A) = P(C) = P(G) = P(T) = 0.25 \Rightarrow \text{Distribution } \theta$$

then $P(S) = 0.25^7 = 6.1035 \times 10^{-5} \Rightarrow P(S|\theta)$

Axel Wintsche

Motif finding as an application of the EM-algorithm

given sequence
$$S = ACCAGAT$$
probability $P(S) = ?$ for example $P(S) = P(A)P(C)P(C)P(A)P(G)P(A)P(T)$

if
$$P(A) = P(C) = P(G) = P(T) = 0.25 \Rightarrow \text{Distribution } \theta$$

then $P(S) = 0.25^7 = 6.1035 \times 10^{-5} \Rightarrow P(S|\theta)$

if
$$P(A) = P(T) = 0.2$$
 and $P(C) = P(G) = 0.3$
then $P(S) = ...$

Axel Wintsche

PFM as probability model

PFM:

- A 00270000010
- C 464100000505
- G 000001800112
- T 422087088261

PFM as probability model

PFM:

- A 00270000010
- C 464100000505
- G 000001800112
- T 422087088261

Alignment:

CCCATTGTTCTC TTTCTGGTTCTC TCAATTGTTTAG CTCATTGTTGTC TCCATTGTTCTC CCTATTGTTCTC TCCATTGTTCGT CCAATTGTTTTG

PFM as probability model

PFM:

- A 00270000010
- C 464100000505
- G 000001800112
- T 422087088261

\Downarrow

Sequence logo:

Alignment:

CCCATTGTTCTC TTTCTGGTTCTC TCAATTGTTTAG CTCATTGTTGTC TCCATTGTTCTC CCTATTGTTCTC TCCATTGTTCGT CCAATTGTTTTG

Axel Wintsche

Sequences with a motif

given:

- sequence S
- S contains exactly one motif m
- distribution θ_S for the sequence
- PFM θ_{PFM} for the motif

 $P(S|\theta_{PFM},\theta_S) = ?$

if S = AABB and m = AAB

Axel Wintsche

Sequences with a motif

given:

- sequence S
- S contains exactly one motif m
- distribution θ_S for the sequence
- PFM θ_{PFM} for the motif

 $P(S|\theta_{PFM},\theta_S) = ?$

if $S = A\underline{AAB}B$ and m = AABthen $P(S|\theta_{PFM}, \theta_S) = P(A|\theta_S) \times P(AAB|\theta_{PFM}) \times P(B|\theta_S)$

Axel Wintsche

Sequences with a motif

now for a set of *n* sequences $S = S_1, S_2, \dots, S_n$ $P(S|\theta_{PFM}, \theta_S) =$ now for a set of *n* sequences $S = S_1, S_2, ..., S_n$ $P(S|\theta_{PFM}, \theta_S) =$ $P(S_1|\theta_{PFM}, \theta_S) \times P(S_2|\theta_{PFM}, \theta_S) \times ... \times P(S_n|\theta_{PFM}, \theta_S)$ now for a set of *n* sequences $S = S_1, S_2, ..., S_n$ $P(S|\theta_{PFM}, \theta_S) =$ $P(S_1|\theta_{PFM}, \theta_S) \times P(S_2|\theta_{PFM}, \theta_S) \times ... \times P(S_n|\theta_{PFM}, \theta_S)$

more formal we calculate $P(S, h|\theta_{PFM}, \theta_S)$ h are the positions of the motif now for a set of *n* sequences $S = S_1, S_2, ..., S_n$ $P(S|\theta_{PFM}, \theta_S) =$ $P(S_1|\theta_{PFM}, \theta_S) \times P(S_2|\theta_{PFM}, \theta_S) \times ... \times P(S_n|\theta_{PFM}, \theta_S)$

more formal we calculate $P(S, h|\theta_{PFM}, \theta_S)$ h are the positions of the motif

Problem: we don't know the positions of the motif

Motivation

optimize model parameters θ e.g., find parameters so that $\widehat{P}(S|\theta)$ is maximal

EM-algorithm

Motivation

optimize model parameters θ e.g., find parameters so that $\widehat{P}(S|\theta)$ is maximal

Concepts:

- observed and hidden data
- iteration of
 - 1 E-step
 - 2 M-step

Axel Wintsche

Expectation value

if we know:

- all outcomes x_i of a discrete random variable X
- the probability $P(x_i)$ of each outcomes

the expectation value of X is defined as

$$E[X] = \sum_{i} x_i P(x_i)$$

Axel Wintsche

Expectation value

if we know:

- all outcomes x_i of a discrete random variable X
- the probability $P(x_i)$ of each outcomes

the expectation value of X is defined as

$$E[X] = \sum_{i} x_i P(x_i)$$

Example: rolling a dice

Motif finding as an application of the EM-algorithm

- outcome: a probability for every start position h_i
- probability of $P(h_i)$ is uniformly distributed

- outcome: a probability for every start position h_i
- probability of $P(h_i)$ is uniformly distributed

Example for S_1 and $\theta = (\theta_{PFM}, \theta_S)$ $E[P(S_1, h|\theta)] = P(AAA|\theta_{PFM})P(B|\theta_S)P(B|\theta_S)$

Axel Wintsche

- outcome: a probability for every start position h_i
- probability of $P(h_i)$ is uniformly distributed

Example for S_1 and $\theta = (\theta_{PFM}, \theta_S)$ $E[P(S_1, h|\theta)] = P(AAA|\theta_{PFM})P(B|\theta_S)P(B|\theta_S) + P(A|\theta_S)P(AAB|\theta_{PFM})P(B|\theta_S)$

Axel Wintsche

- outcome: a probability for every start position h_i
- probability of $P(h_i)$ is uniformly distributed

Example for S_1 and $\theta = (\theta_{PFM}, \theta_S)$ $E[P(S_1, h|\theta)] = P(AAA|\theta_{PFM})P(B|\theta_S)P(B|\theta_S) + P(A|\theta_S)P(AAB|\theta_{PFM})P(B|\theta_S) + P(A|\theta_S)P(ABB|\theta_{PFM})$

Axel Wintsche

- outcome: a probability for every start position h_i
- probability of $P(h_i)$ is uniformly distributed

Example for
$$S_1$$
 and $\theta = (\theta_{PFM}, \theta_S)$

$$E[P(S_1, h|\theta)] = P(AAA|\theta_{PFM})P(B|\theta_S)P(B|\theta_S) \times 1/3$$

$$+ P(A|\theta_S)P(AAB|\theta_{PFM})P(B|\theta_S) \times 1/3$$

$$+ P(A|\theta_S)P(A|\theta_S)P(ABB|\theta_{PFM}) \times 1/3$$

Axel Wintsche

- maximizes the expected value $E[P(S, h|\theta_{PFM}, \theta_S)]$ over the model parameters of θ_{PFM} and θ_S
- see example...