Motif finding as an application of the EM-algorithm

Axel Wintsche

November 25, 2011

Sequences and probabilities

$$
\begin{array}{ll}
\text { given sequence } & S=\text { ACCAGAT } \\
\text { probability } & P(S)=?
\end{array}
$$

Sequences and probabilities

$$
\begin{array}{ll}
\text { given sequence } & S=\text { ACCAGAT } \\
\text { probability } & P(S)=\text { ? } \\
\text { for example } & P(S)=P(\mathrm{~A}) P(\mathrm{C}) P(\mathrm{C}) P(\mathrm{~A}) P(\mathrm{G}) P(\mathrm{~A}) P(\mathrm{~T})
\end{array}
$$

Sequences and probabilities

$$
\begin{array}{ll}
\text { given sequence } & S=\text { ACCAGAT } \\
\text { probability } & P(S)=\text { ? } \\
\text { for example } & P(S)=P(\mathrm{~A}) P(\mathrm{C}) P(\mathrm{C}) P(\mathrm{~A}) P(\mathrm{G}) P(\mathrm{~A}) P(\mathrm{~T})
\end{array}
$$

$$
\begin{aligned}
& \text { if } P(\mathrm{~A})=P(\mathrm{C})=P(\mathrm{G})=P(\mathrm{~T})=0.25 \\
& \text { then } P(S)=0.25^{7}=6.1035 \times 10^{-5}
\end{aligned}
$$

Sequences and probabilities

$$
\begin{array}{ll}
\text { given sequence } & S=\text { ACCAGAT } \\
\text { probability } & P(S)=\text { ? } \\
\text { for example } & P(S)=P(\mathrm{~A}) P(\mathrm{C}) P(\mathrm{C}) P(\mathrm{~A}) P(\mathrm{G}) P(\mathrm{~A}) P(\mathrm{~T})
\end{array}
$$

$$
\begin{array}{ll}
\text { if } P(\mathrm{~A})=P(\mathrm{C})=P(\mathrm{G})=P(\mathrm{~T})=0.25 & \Rightarrow \text { Distribution } \theta \\
\text { then } P(S)=0.25^{7}=6.1035 \times 10^{-5} & \Rightarrow P(S \mid \theta)
\end{array}
$$

Sequences and probabilities

$$
\begin{array}{ll}
\text { given sequence } & S=\text { ACCAGAT } \\
\text { probability } & P(S)=\text { ? } \\
\text { for example } & P(S)=P(\mathrm{~A}) P(\mathrm{C}) P(\mathrm{C}) P(\mathrm{~A}) P(\mathrm{G}) P(\mathrm{~A}) P(\mathrm{~T})
\end{array}
$$

$$
\begin{array}{ll}
\text { if } P(\mathrm{~A})=P(\mathrm{C})=P(\mathrm{G})=P(\mathrm{~T})=0.25 & \Rightarrow \text { Distribution } \theta \\
\text { then } P(S)=0.25^{7}=6.1035 \times 10^{-5} & \Rightarrow P(S \mid \theta)
\end{array}
$$

$$
\text { if } P(\mathrm{~A})=P(\mathrm{~T})=0.2 \text { and } P(\mathrm{C})=P(\mathrm{G})=0.3
$$

$$
\text { then } P(S)=\ldots
$$

PFM as probability model

PFM:
A 002700000010
C 464100000505
G 000001800112
T 422087088261

PFM as probability model

PFM:
A
C
C
G
G
T

Alignment:
CCCATTGTTCTC TTTCTGGTTCTC TCAATTGTTTAG CTCATTGTTGTC TCCATTGTTCTC CCTATTGTTCTC TCCATTGTTCGT CCAATTGTTTTG

PFM as probability model

PFM:
A 002700000010
C 464100000505
G 000001800112
T 422087088261

Sequence logo:

Alignment:
CCCATTGTTCTC TTTCTGGTTCTC TCAATTGTTTAG CTCATTGTTGTC TCCATTGTTCTC CCTATTGTTCTC TCCATTGTTCGT CCAATTGTTTTG

Sequences with a motif

given:

- sequence S
- S contains exactly one motif m
- distribution θ_{S} for the sequence
- PFM $\theta_{P F M}$ for the motif
$P\left(S \mid \theta_{P F M}, \theta_{S}\right)=?$
if $S=\mathrm{AAABB}$ and $m=\mathrm{AAB}$

Sequences with a motif

given:

- sequence S
- S contains exactly one motif m
- distribution θ_{S} for the sequence
- PFM $\theta_{P F M}$ for the motif
$P\left(S \mid \theta_{P F M}, \theta_{S}\right)=?$
if $S=\mathrm{AAABB}$ and $m=\mathrm{AAB}$
then $P\left(S \mid \theta_{P F M}, \theta_{S}\right)=P\left(\mathrm{~A} \mid \theta_{S}\right) \times P\left(\mathrm{AAB} \mid \theta_{P F M}\right) \times P\left(\mathrm{~B} \mid \theta_{S}\right)$

Sequences with a motif

now for a set of n sequences $S=S_{1}, S_{2}, \ldots, S_{n}$
$P\left(S \mid \theta_{\text {PFM }}, \theta_{S}\right)=$

Sequences with a motif

now for a set of n sequences $S=S_{1}, S_{2}, \ldots, S_{n}$
$P\left(S \mid \theta_{P F M}, \theta_{S}\right)=$
$P\left(S_{1} \mid \theta_{P F M}, \theta_{S}\right) \times P\left(S_{2} \mid \theta_{P F M}, \theta_{S}\right) \times \ldots \times P\left(S_{n} \mid \theta_{P F M}, \theta_{S}\right)$

Sequences with a motif

now for a set of n sequences $S=S_{1}, S_{2}, \ldots, S_{n}$
$P\left(S \mid \theta_{\text {PFM }}, \theta_{S}\right)=$
$P\left(S_{1} \mid \theta_{P F M}, \theta_{S}\right) \times P\left(S_{2} \mid \theta_{P F M}, \theta_{S}\right) \times \ldots \times P\left(S_{n} \mid \theta_{P F M}, \theta_{S}\right)$
more formal we calculate $P\left(S, h \mid \theta_{P F M}, \theta_{S}\right)$
h are the positions of the motif

Sequences with a motif

now for a set of n sequences $S=S_{1}, S_{2}, \ldots, S_{n}$
$P\left(S \mid \theta_{\text {PFM }}, \theta_{S}\right)=$
$P\left(S_{1} \mid \theta_{P F M}, \theta_{S}\right) \times P\left(S_{2} \mid \theta_{P F M}, \theta_{S}\right) \times \ldots \times P\left(S_{n} \mid \theta_{P F M}, \theta_{S}\right)$
more formal we calculate $P\left(S, h \mid \theta_{P F M}, \theta_{S}\right)$
h are the positions of the motif

Problem: we don't know the positions of the motif

EM-algorithm

Motivation

optimize model parameters θ
e.g., find parameters so that $\widehat{P}(S \mid \theta)$ is maximal

Axel Wintsche

Motif finding as an application of the EM-algorithm

EM-algorithm

Motivation

optimize model parameters θ
e.g., find parameters so that $\widehat{P}(S \mid \theta)$ is maximal

Concepts:
■ observed and hidden data

- iteration of

1 E-step
2 M-step

Expectation value

if we know:
■ all outcomes x_{i} of a discrete random variable X

- the probability $P\left(x_{i}\right)$ of each outcomes
the expectation value of X is defined as

$$
E[X]=\sum_{i} x_{i} P\left(x_{i}\right)
$$

Expectation value

if we know:
■ all outcomes x_{i} of a discrete random variable X

- the probability $P\left(x_{i}\right)$ of each outcomes
the expectation value of X is defined as

$$
E[X]=\sum_{i} x_{i} P\left(x_{i}\right)
$$

Example: rolling a dice

E-step

calculates the expectation value of $E\left[P\left(S, h \mid \theta_{P F M}, \theta_{S}\right)\right]$
simplified:

- outcome: a probability for every start position h_{i}
- probability of $P\left(h_{i}\right)$ is uniformly distributed

E-step

calculates the expectation value of $E\left[P\left(S, h \mid \theta_{P F M}, \theta_{S}\right)\right]$ simplified:

- outcome: a probability for every start position h_{i}
- probability of $P\left(h_{i}\right)$ is uniformly distributed

Example for S_{1} and $\theta=\left(\theta_{P F M}, \theta_{S}\right)$

$$
E\left[P\left(S_{1}, h \mid \theta\right)\right]=P\left(\mathrm{AAA} \mid \theta_{P F M}\right) P\left(\mathrm{~B} \mid \theta_{S}\right) P\left(\mathrm{~B} \mid \theta_{S}\right)
$$

E-step

calculates the expectation value of $E\left[P\left(S, h \mid \theta_{P F M}, \theta_{S}\right)\right]$ simplified:

- outcome: a probability for every start position h_{i}
- probability of $P\left(h_{i}\right)$ is uniformly distributed

Example for S_{1} and $\theta=\left(\theta_{P F M}, \theta_{S}\right)$

$$
\begin{aligned}
E\left[P\left(S_{1}, h \mid \theta\right)\right] & =P\left(\mathrm{AAA} \mid \theta_{P F M}\right) P\left(\mathrm{~B} \mid \theta_{S}\right) P\left(\mathrm{~B} \mid \theta_{S}\right) \\
& +P\left(\mathrm{~A} \mid \theta_{S}\right) P\left(\mathrm{AAB} \mid \theta_{P F M}\right) P\left(\mathrm{~B} \mid \theta_{S}\right)
\end{aligned}
$$

E-step

calculates the expectation value of $E\left[P\left(S, h \mid \theta_{P F M}, \theta_{S}\right)\right]$ simplified:

- outcome: a probability for every start position h_{i}
- probability of $P\left(h_{i}\right)$ is uniformly distributed

Example for S_{1} and $\theta=\left(\theta_{P F M}, \theta_{S}\right)$

$$
\begin{aligned}
E\left[P\left(S_{1}, h \mid \theta\right)\right] & =P\left(\mathrm{AAA} \mid \theta_{P F M}\right) P\left(\mathrm{~B} \mid \theta_{S}\right) P\left(\mathrm{~B} \mid \theta_{S}\right) \\
& +P\left(\mathrm{~A} \mid \theta_{S}\right) P\left(\mathrm{AAB} \mid \theta_{P F M}\right) P\left(\mathrm{~B} \mid \theta_{S}\right) \\
& +P\left(\mathrm{~A} \mid \theta_{S}\right) P\left(\mathrm{~A} \mid \theta_{S}\right) P\left(\mathrm{ABB} \mid \theta_{P F M}\right)
\end{aligned}
$$

E-step

calculates the expectation value of $E\left[P\left(S, h \mid \theta_{P F M}, \theta_{S}\right)\right]$ simplified:

- outcome: a probability for every start position h_{i}
- probability of $P\left(h_{i}\right)$ is uniformly distributed

Example for S_{1} and $\theta=\left(\theta_{P F M}, \theta_{S}\right)$

$$
\begin{aligned}
E\left[P\left(S_{1}, h \mid \theta\right)\right] & =P\left(\mathrm{AAA} \mid \theta_{P F M}\right) P\left(\mathrm{~B} \mid \theta_{S}\right) P\left(\mathrm{~B} \mid \theta_{S}\right) & \times 1 / 3 \\
& +P\left(\mathrm{~A} \mid \theta_{S}\right) P\left(\mathrm{AAB} \mid \theta_{P F M}\right) P\left(\mathrm{~B} \mid \theta_{S}\right) & \times 1 / 3 \\
& +P\left(\mathrm{~A} \mid \theta_{S}\right) P\left(\mathrm{~A} \mid \theta_{S}\right) P\left(\mathrm{ABB} \mid \theta_{P F M}\right) & \times 1 / 3
\end{aligned}
$$

M-step

- maximizes the expected value $E\left[P\left(S, h \mid \theta_{P F M}, \theta_{S}\right)\right]$ over the model parameters of $\theta_{P F M}$ and θ_{S}
■ see example...

