Matching PWMs to the Genome part of "Genomik der Genregulation"

Sonja Prohaska

Computational EvoDevo University Leipzig

Leipzig, WS 2011/12

< ロ > < 同 > < 回 > < 回 > < □ > <

э

Position Weigth Matrix (PWM)

= Position-Specific Weight Matrix (PSWM) = Position-Specific Scoring Matrix (PSSM), is a common representation of a sequence motif or pattern in biological sequences.

d Position weight matrix (PWM)

I	А	-1.93	0.79	0.79	-1.93	0.45	1.50	0.79	0.45	1.07	0.79	0.00	-1.93	-1.93	0.79
	С	0.45	-1.93	0.79	1.68	-1.93	-1.93	-1.93	0.45	-1.93	-1.93	-1.93	-1.93	0.00	0.79
	G	0.00	0.45	-1.93	-1.93	-1.93	-1.93	-1.93	-1.93	0.66	-1.93	1.30	1.68	1.07	-1.93
	т	0.15	0.66	-1.93	-1.93	1.07	0.66	0.79	0.00	0.00	0.79	-1.93	-1.93	-0.66	-1.93

$$M = \sum_{i=1}^{w} m_{s_i,i}$$

- Given a PWM for a motif of length w and a substring $s = s_1 s_2 \dots s_w$ of length w, calculate the match score of the PWM to the substring.
- *i*...position in substring *s*
- s_i ... character at position i in the substring s
- $m_{a,i}$... score in row *a*, column *i* of the PWM

Data Collection for PWMs

observed binding sites for MEF2

- take experimentally verified binding sites
- align the sequences
- the variability among sites strongly affects the PWM and motif finding

・ロト ・日 ・ ・ ヨ ・ ・

ъ

Derivation of Position Frequency Matrices (PFMs)

c Position frequency matrix (PFM)

	1	2	3	4	5	6	7	8	9	10	11	12	13	14
A	0	4	4	0	3	7	4	3	5	4	2	0	0	4
С	3	0	4	8	0	0	0	3	0	0	0	0	2	4
G	2	3	0	0	0	0	0	0	1	0	6	8	5	0
т	3	1	0	0	5	1	4	2	2	4	0	0	1	0

- the first column in the alignment (last slide) consists of no As, three Cs, two Gs and three Ts
- this results in in the corresponding first column in the PFM
- an entry in the PFM is f_{a,i} for the character a at position i in the matrix

PPMs give the relative frequencies that can be viewed as probabilities to observe a character *a* at position *i*.

$$p_{a,i} = \frac{f_{a,i}}{\sum_{b \in A, C, G, T} f_{b,i}} \tag{1}$$

What about the probability to see a character *a* at position*i* if *a* was not observed among the collected sites?

Pseudocounts: handling zeros in the PFMs

$$p_{a,i} = \frac{f_{a,i} + B/4}{\sum_{b \in A, C, G, T} f_{b,i} + B}$$
(2)

- *f_{a,i}*... is the observed absolute frequency of character *a* at position *i* in the motif
- *B*... is the pseudocount (e.g.: 1)

This makes sure that a character *a* at position *i* has a very small probability (but greater than zero) to occure even though it was not among the collected sites.

Derivation of Position Weigth Matrices (PWMs)

d	Position weight matrix (PWM)														
	Α	-1.93	0.79	0.79	-1.93	0.45	1.50	0.79	0.45	1.07	0.79	0.00	-1.93	-1.93	0.79
	С	0.45	-1.93	0.79	1.68	-1.93	-1.93	-1.93	0.45	-1.93	-1.93	-1.93	-1.93	0.00	0.79
	G	0.00	0.45	-1.93	-1.93	-1.93	-1.93	-1.93	-1.93	0.66	-1.93	1.30	1.68	1.07	-1.93
	т	0.15	0.66	-1.93	-1.93	1.07	0.66	0.79	0.00	0.00	0.79	-1.93	-1.93	-0.66	-1.93

$$m_{a,i} = \log_2 \frac{p_{a,i}}{p_a} \tag{3}$$

< ロ > < 同 > < 回 > < 回 > < □ > <

- the weigths depend on the nucleotide distribution in the sequence that is searched p_a, the background probability of a
- individual positions in the motif are assumed to be independent

Scoring matches

- given a genomic sequence *G* of length *L*, take all $1 \le k \le L w + 1$ subsequence of length *w*, $S_k = s_1 s_2 \dots s_w$
- score them according to the following equation
- the higher the match score *M_k* for a subsequence *k* the better the match
- the match score is proportional to the binding energy contribution

$$M = \sum_{i=1}^{w} m_{\mathbf{s}_{i},i} \tag{4}$$

< ロ > < 同 > < 回 > < 回 > .

e Site scoring

0.45	-0.66	0.79	1.68	0.45	-0.66	0.79	0.45	-0.66	0.79	0.00	1.68	-0.66	0.79
т	т	Α	С	A	т	А	Α	G	т	А	G	т	С

 $\Sigma = 5.23, 78\%$ of maximum

What you should know from school

$$\log(a imes b) = \log a + \log b$$

 $\log \prod_{i=1}^{n} a_i = \sum_{i=1}^{n} \log a_i$

$$M = \sum_{i=1}^{w} m_{s_{i},i} = \sum_{i=1}^{w} \log_2 \frac{p_{a,i}}{p_a} = \log_2 \prod_{i=1}^{w} \frac{p_{a,i}}{p_a}$$
(5)
$$2^{M} = \prod_{i=1}^{w} \frac{p_{a,i}}{p_a} = \frac{\prod_{i=1}^{w} p_{a,i}}{\prod_{i=1}^{w} p_a}$$
(6)

・ロン・雪と・雪と、 ヨン・

æ

The meaning of the match score

- $\prod_{i=1}^{w} p_{a,i} \dots$ probability that the subsequence matches the PPM
- $\prod_{i=1}^{w} p_a \dots$ probability that the subsequence occures randomly
- therefore, 2^M is the fraction by which the subsequence is more likely derived from the PPM then the background by chance

What do negative match scores mean?

What is the maximal score for a given PWM?

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト ・

æ

Sequence Logo

The Information Content *IC* at position *i* is given by

$$IC_i = 2 + \sum_{binA,C,G,T} p_{b,i} \log_2 p_{b,i}$$
(7)

The IC_i multiplied by the relative frequency of a nucleotide *a* in position *i* specified by the PFM gives the heigth in bits in the sequence logo.

- [Stormo, 2000] Gary D. Stormo. DNA binding sites: representation and discovery. Bioinformatics. 2000. 16:1, p16-23
- [Kel, 2003] A.E. Kel, E. Gößling, I. Reuter, E. Cheremushkin, O.V. Kel-Margoulis and E. Wingender. MATCHTM: a tool for searching transcription factor binding sites in DNA sequences. Nucl. Acid Res. 2003. 31:13, p3576-3579.
- [Wasserman, 2004] Wyeth W. Wasserman and Albin Sandelin. Applied Bioinformatics for the identification of regulatory elements. Nat Rev Genet. 2004. 5:4, p276-287.