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The Beginning

Question:

• “What and why am I?”

• or less phylosophical: “How works evolution and
development?”
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∼ 2, 350 years ago:
• “Scala Naturae” of

Aristotle (384 BC –
322 BC)

• classification from
imperfect inanimate
matter to most perfect
form



Introduction Detection Evolution Summary

The Evolution of Evolution

-340 1837
[year]

174 years ago:
• “Transmutation of

Species” of Charles
Darwin (1809 – 1882)

• first evolutionary tree



Introduction Detection Evolution Summary

The Evolution of Evolution

-340 1837 1866
[year]

145 years ago:
• “Generelle Morphologie

der Organismen” of Ernst
Haeckel (1834 – 1919)

• first single tree of all
forms of life
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The Evolution of Evolution

-340 1837 1866
[year]

2011

today
• “Tree of Life” from

European Molecular
Biology Laboratory

• based on known
genomes
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Mechanisms of Evolution and Development

• end of 1950s: body plan of each life form is encoded in
genomes

• genome projects: differences between genomes are rather
small

• today: time, location and amount of gene products are
responsible for causal differences

• ⇒ regulation of gene expression is basis for differentiation,
morphogenesis and versatility and adaptability of any organism
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Summary: Gene Regulation

• basis for differentiation, morphogenesis and versatility and
adaptability of any organism

• mainly performed by binding of trans-regulatory factors
(transcription factors, TF) to cis-regulatory elements
(transcription factor binding sites, TFBS)

• mutations at TFBS have potential for immense changes

• ⇒ research of regulatory elements is one of main fields in life
sciences
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transcriptional output
remains conserved

• investigation of molecular
evolution of TFBS can
reveal timing/kind of
evolutionary changes that
affect gene regulation

• ⇒ creto-Algorithm
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Detection of Regulatory Elements

• regulatory elements are crucial for
all life processes

• mutations are mostly lethal and are
not passed to next generation
(stabilizing selection)

• regulatory elements evolve much
slower than adjacent non-functional
DNA (phylogenetic footprints)

• detectable by comparative
sequence analysis ⇒ phylogenetic
footprinting
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Bioinformatic Challenge

• use of low stringency because of
insignificant motifs

• ⇒ vast number of alignments
between random similarities in
unrelated areas

• aim: determining alignments
between evolutionary related areas
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Evolutionary Information

• (a) functional motifs are widely
conserved ⇒ support

• (b) order of motifs defines windows
for new motifs ⇒ consistence

• existing multiple alignment
approaches: global alignments
disregard support of segments,
local alignments disregard order
information

• idea: calculate pairwise local
alignments with low stringency,
determine maximal consistent
subsets based on support
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Complexity of MCASP

• MCASP ∈ NP (reducible to
’Multiple Alignment Problem’ in P)

• optimal solution: check each
subset of A for consistency

• exponential growth
• 7 alignments: 128 subsets
• 250 alignments: ∼ 1075 subsets

• biological data sets contain of
millions of alignments ⇒ need for
heuristic approach
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Heuristic: Algorithmic Sketch

• input: arbitrary set A of local pairwise
alignments

• assemble multiple alignment M, starting with
M = ∅

• checking iteratively all alignments A ∈ A

• consistent alignments are inserted, inconsistent
are rejected

• alignments in M are consistent subset of A

• problem: inserted alignments cannot be removed
or corrected ⇒ insertion order is crucial
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Heuristic: Extended Scores

• start with alignments that are most
supported by other alignments

• express support by score ⇒
extended scores

• similar to T-Coffee
a

• basic score plus bonus for each
direct / indirect support

• insert alignments in order based on
extended score

aNotredame et al.:T-coffee: A novel method
for fast and accurate multiple sequence
alignment. J Mol Biol , 302(1), 205–217
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Heuristic: Algorithmic Tuning

• abstract alignments by intervals
A = {[x , bx , ex ], [y , by , ey ]}

• calculate intermediate positions by
linear interpolation

• allow adjustable error tolerance
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last prefix column for each
alignment sequence

• insertion can cause split,
switch or merge of columns
and alignment
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Heuristic: Complexity

• insertion of n

alignments over m

sequences with length
l is in O(nlm)

• calculation of
extended scores is in
O(n3)

• artificial data sets
with different set
sizes: mean runtime
in O(n2)
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Results: Maximal Consistent Subsets

• artificial data sets A
with up to 30
alignments

• comparison of
heuristic and optimal
(checking all subsets)
solutions

• optimal result found
in most cases,
number of missing
alignments relative to
optimal solution is
low
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Results: Alignment Calculation on BRaliBase II

GII Intron 5S rRNA SRP RNA tRNA U5 RNA
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Footprint Detection with Tracker

• calculate local pairwise alignments with low stringency
between all input sequences

• remove repetitive areas based on entropy and mutual
information content

• calculate maximal consitent subset of alignment set

• correct column transition errors caused by
inconsistency-tolerance
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Tracker: CSB and Digit Indentity in Birds

mouse

human

dog

opossum

chicken
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1+

1+

1+

1+
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Tracker: CSB and Digit Indentity in Birds

mouse

human

dog

opossum

chicken

finch

1+

1+

1+

1+

1+

1+

21 4253

1 3241

11 3261

59 3215

188 4003

1 2832

mouse:   0|+|3404-3435|32  74 (0)  TCATTACCT-TTTTGGAAAAACACTTCTCTCCC  (27) 77
human:   0|+|2251-2282|32  72 (16) TCATTACTT-TTTCAGAAAAGCACTTTTTTCCC  (0)  76
dog:     0|+|2251-2282|32  72 (16) TCATTACCT-TTTCGGAAAAGCACTTTTTTGCC  (0)  76
opossum: 0|+|2312-2342|31  74 (0)  TCATTGCCTCTTTTGAAAGAGCA--TGTTTCCC  (0)  76
chicken:                           ---------------------------------
finch:                             ---------------------------------
                                   ***** * * ***   ** * **  * * * **     
mouse:                             -------------------------
human:                             -------------------------
dog:                               -------------------------
opossum:                           -------------------------
chicken: 0|+|3376-3400|25  82 (0)  AAAAGGAGGTAATACTTAAAGGAAA  (1) 93
finch:   0|+|2145-2169|25  82 (0)  ATAAGGAGGCAATACTTAAAGTGAA  (7) 93
                                   * ******* ***********  **
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Tracker: HoxA-Clusters in Vertebrates

HfM

HsA

PsA

MsA

DrAa

TrAa

DrAb

TrAb

49 124484

6 157054

117 262246

1 30676

72 128403

92 117290

17 96856

1 46796
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Summary: Detection of Regulatory Elements

• tracker detects phylogenetic footprints by computing a new
form of multiple alignments consisting of local motifs that still
satisfy sequence order condition

• computation of initial alignment sets and other alignment
steps are completely generic and can be adopted to new
alignment algorithms

• todo: usage of phylogenetic information, check for motif
overrepresentation in footprints
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Evolutionary Analysis of Regulatory Elements

Schmidt et al., Science, May
2010:

• determination of
genome-wide occupancy for
CCAAT/enhancer-binding
protein alpha (CEBPA) in
five vertebrates

• CEBPA: regulation of leptin
and growth arrest in
cultured cells



Introduction Detection Evolution Summary

Binding Site Turnover

• TFBS turnover (loss and
generation of TFBS) is common
event even when transcriptional
output remains conserved

decay

origination



Introduction Detection Evolution Summary

Binding Site Turnover

• TFBS turnover (loss and
generation of TFBS) is common
event even when transcriptional
output remains conserved

• existence of TFBS is more
important than exact location

decay

origination



Introduction Detection Evolution Summary

Binding Site Turnover

• TFBS turnover (loss and
generation of TFBS) is common
event even when transcriptional
output remains conserved

• existence of TFBS is more
important than exact location

• supported by variability of TF
binding

decay

origination



Introduction Detection Evolution Summary

Binding Site Turnover

• TFBS turnover (loss and
generation of TFBS) is common
event even when transcriptional
output remains conserved

• existence of TFBS is more
important than exact location

• supported by variability of TF
binding

• arrival of new TFBS with
origination rate and retention with
decay rate

decay

origination
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Turnover in Evolutionary Context

• evolutionary events are
likely to cause lineage
specific differences

• different rates can
indicate timing and kind
of evolutionary changes
that affect gene
regulation

• problem: evolutionary
rates are unknown

• know phylogenetic
relationships and binding
site numbers for terminal
nodes
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Lemur9
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Mouse12

Rat15
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Bat17

Dog12

Armadillo11

Elephant16

528 Myr

Opossum12

Platypus14

Chicken8

Frog1

Coelacanth7

Bichir3

Shark7
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Model for Binding Site Turnover

• what are the most likely
rates, how likely is given
tree in respect to these
rates?
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Model for Binding Site Turnover

• what are the most likely
rates, how likely is given
tree in respect to these
rates?

• calculation of tree
likelihood is easy ⇒ need
probability distribution of
TFBS on branches

• what is the probability of
having a specific binding
site number, given start
number, time and
evolutionary rates?

ERE
Human12

Chimp14

Baboon11

Marmoset17

Lemur9

Galago9

Mouse12

Rat15

Rabbit11

Bat17

Dog12

Armadillo11

Elephant16

528 Myr

Opossum12

Platypus14

Chicken8

Frog1

Coelacanth7

Bichir3

Shark7
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Model: Assumptions

• arrival of new TFBS is not
influenced by number of
existing TFBS

• TFBS arise with constant
rate λ and decay with
constant rate µ

constant arival

BINDING SITES

random placement

DNA

exponential decay

⇒ Kolmogorov forward equation:

ṗ0(t) = −λp0(t) + µp1(t) (1)

ṗn(t) = λpn−1(t) − (λ + µn)pn(t) + (n+1)µpn+1(t) (2)
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Model: Sketch of Derivation

• replace probability distribution by generating function

• partial differential equation (PDE):

∂P(z , t)

∂t
= λ(z − 1)P(z , t) + µ(1 − z)

∂P(z , t)

∂z
(3)

• use characteristic equations to solve PDE

• expected binding site number:

E [n(t)] =
λ

µ
(1 − e−µt) + E [n(t = 0)]e−µt (4)
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Model: Transient probability distribution

• solution:

pn(t) =
1

n!
e−(λ/µ)(1−e−µt)

min(n0,n)
∑

k=0

k!

(

n

k

)(

n0

k

) (

λ

µ

)n−k

× (e−µt)k(1 − e−µt)n+n0−2k

(5)
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Model: Transient probability distribution

• solution:

pn(t) =
1

n!
e−(λ/µ)(1−e−µt)

min(n0,n)
∑

k=0

k!

(

n

k

)(

n0

k

) (

λ

µ

)n−k

× (e−µt)k(1 − e−µt)n+n0−2k

(5)

• for t → ∞ follows stationary Poisson distribution:

p̂n =

(

1

n!

) (

λ

µ

)n

e−λ/µ (6)
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Characteristics

• probability for binding
site numbers at
different times

• start binding site
number for t = 0:
n0 = 30

• origination rate:
λ = 5 × 10−7

• decay rate:
µ = 1 × 10−8

• ratio: λ/µ = 50.
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Validation by Sequence Evolution

• simulate sequence evolution with specific mutation and
fixation rate

• determine distribution by counting of TFBS at certain time
points
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Tree Likelihood

• tree likelihood:

L =

nmax
∑

n=nmin

π(n)Lr (n) (7)

• likelihoods of subtree defined by node i :

Li (n) =
∏

j∈children(i)

nmax
∑

m=nmin

Pr(m|n, tj) Lj(m)

(8)

• breakup criteria for leaves:

Li (n) =

{

1 : n = bs(i)
0 : else

(9)

Human12

Chimp14

Baboon11

Marmoset17
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Likelihood Landscape
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Optimization: Hill Climbing

BEGIN END

step optimization

likelihood optimization

L       = L(λ,µ);max

L' = L      ;  ∆  = λ;  ∆  = µ; max

∆  = ∆  /2;  ∆  = ∆  /2; 
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• simulation on linear and binary
trees with different taxa number
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Results: Simulation of Evolution

• simulation on linear and binary
trees with different taxa number

• number at root: 10

• simulation for different realtive
clade ages (RCA = age of root /
half-life time of TFBS)

• age of root node: 106, adjust age
by µ and λ

• draw TFBS number at inner nodes
randomly based on distribution
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Results: Conversion and λ/µ–n̄–Correlation
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Results: Accuracy in Dependence of Taxa
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Results: Accuracy in Dependence of RCA
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Results: Evolution of Methionine Pathway in Yeast
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Results: Evolution of Vertebratee HoxA Clusters

ERE
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Summary: Evolutionary Analysis of Regulatory Elements

• completely new approach independent of conserved regulatory
sequences (works even with data where turnover changed
location and arrangement of binding sites)

• simple, mathematically non-trivial, phenomenological model
for binding site number evolution at a genomic locus

• allows detection of heterogeneity in rate of origination/decay
between different lineages/clades ⇒ hints for functionally
important changes in the evolution of regulation



Introduction Detection Evolution Summary

Final Summary
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known problems concerning detection and evolutionary
analysis of regulatory elements
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Final Summary

• tracker and creto present complete new approaches to well
known problems concerning detection and evolutionary
analysis of regulatory elements

• both programs have been tested on artificial and biological
data and are available for download via homepage of institute
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Thank You

Then the Dean repeated the mantra that
has had such a marked effect on the progress
of knowledge throughout the ages.

“Why don’t we just mix up absolutely ev-
erything and see what happens?” he said.

And Ridcully responded with the tradi-
tional response.

“It’s got to be worth a try.” he said.

Terry Pratchett, Hogfather
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