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Genome-scale in silico Model

◮ functional -omics = annotating -omics data

◮ integrating -omics data of different kinds = systems biology

◮ Represent biological systems by networks.

◮ “-omics” data provide information about network components
and their interactions.
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Genome-scale in silico Model
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The Cell as a Chemical Reaction Network

3. get the nodes of the network and integrate
◮ (functional) genomics → all functional elements (mainly

protein genes) that could be found and annotated in the
genome

◮ metabolomics → all metabolites present in a cell (substrates,
cofactors, byproducts, etc. of chemical reactions)

◮ proteomics → all structural proteins and enzymes (catalysts of
chemical reactions) present in a cell

◮ fluxomics → flows and reaction rates of all chemical reactions
in a cell
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The Cell as a Chemical Reaction Network

4. get the edges of the network by representing the chemical
reactions

◮ allow chemical reactions forming or breaking covalent bonds
◮ allow chemical reactions that cause association or dissociation

of molecules

5. get the stoichiometry of the chemical reactions right
◮ balence atom composition (and mass)
◮ invariant between organisms, independent of changes to

conditions

◮ get the thermodynamics of the chemical reactions right
◮ balence energy, derive relative rates of reactions
◮ dependent on changes to (physiological) conditions
◮ sequence alteration in binding surfaces can alter the

thermodynamics of molecule association in different species

◮ get direction and absolute rate of reactions
◮ determined by enzymes and their activity
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The Cell as a Chemical Reaction Network

Stady-State Networks

◮ biological systems exist in a stady state (rather than in
equilibrium)

6. boundaries for (Sub-)systems need to be defined

8. a network is in stady-state if the in-flow is equal to the
out-flow (i.e. no accumulation or depletion of molecules
occurs)
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The Interative Process of Network Reconstruction

1. identify relevant metabolic genes from genome annotation

2. translate gene functions into balanced chemical reactions

3. network assembly from individual reactions

4. problem of incomplete data: fill in missing reactions to satisfy
stady-state assumption

5. test the model in silico and compare results with physiological
data

6. use gene essentiality date to validate reconstruction

7. refine interatively
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The Interative Process of Network Reconstruction
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Formulating Biochemical Reactions
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Constraint-based Modelling Approach

stoichiometric matrix

Smv =
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◮ while m are the metabolites, v are the fluxes/reactions

◮ a stoichiometric matrix S transforms the flux vector
v = (v1, v2, ..., vn) into a vector of time derivates of the
concentration vector x = (x1, x2, ..., xn)

◮
dx
dt

= Sv , stady state balance Sv = 0

◮
dxi
dt

=
∑

k Sikvk is the sum of all fluxes producing or
consuming xi
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Constraint-based Modelling Approach

stoichiometric matrix

Smv =
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m1 = c1;m2 = c2;m3 = c3;m4 = c2c3;m5 = c1c3;m6 = c3c2

◮ reversible convertion: c2c3
v1
−→ c3c2

◮ bi-molecular association: cs + c3
v2
−→ c2c3

◮ cofactor-coupled reaction: c2 + c1c3
v3
−→ c2c3 + c1 with c1 as

co-factor
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Constraint-based Modelling Approach

network representation
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Constraint-based Modelling Approach

◮ physiochemical constraints (inviolable)
◮ mass, energy and momentum conserved
◮ slow diffusion of macromolecules in viscous medium
◮ reaction rates determined by local consentrations
◮ reactions proceed in the direction of negative free-energy

change

◮ spatial contraints
◮ transport, structures
◮ e.g. length, packaging and accessibility constrain arrangement

of DNA

◮ environmental contraints
◮ e.g. nutrient availability, temperature and osmolarity
◮ important to determine phenotypic properties and fitness

◮ regulatory (self-imposed) constraints
◮ allow the cell to eliminate suboptimal phenotypic states
◮ e.g. transcriptional, translational, enzyme activity regulation
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Given the Network...

◮ sample the network and study network properties
◮ population of the flux space
◮ interdipendencies and complexity
◮ robustness to disturbance
◮ flexibility to adopt to changing environments

◮ given an objective function linear optimization or linear
programming can be used to calculate one optimal reaction
network state (e.g. optimal growth)

◮ in large, more interconected networks alternative optima can
be examined with mixed-integer LP algorithms

◮ optimize overproduction of a product: simultaneously
optimize growth and secrection of the target product by
(multiple) gene deletion.
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