Grundlagen der Systembiologie und der Modellierung epigenetischer Prozesse

Sonja J. Prohaska

Bioinformatics Group Institute of Computer Science University of Leipzig

October 25, 2010

Genome-scale in silico Model

- functional -omics = annotating -omics data
- integrating -omics data of different kinds = systems biology
- Represent biological systems by networks.
- "-omics" data provide information about network components and their interactions.

Genome-scale in silico Model

The Cell as a Chemical Reaction Network

- 3. get the nodes of the network and integrate
 - ► (functional) genomics → all functional elements (mainly protein genes) that could be found and annotated in the genome
 - ▶ metabolomics → all metabolites present in a cell (substrates, cofactors, byproducts, etc. of chemical reactions)
 - ▶ proteomics → all structural proteins and enzymes (catalysts of chemical reactions) present in a cell
 - \blacktriangleright fluxomics \rightarrow flows and reaction rates of all chemical reactions in a cell

The Cell as a Chemical Reaction Network

- get the edges of the network by representing the chemical reactions
 - allow chemical reactions forming or breaking covalent bonds
 - allow chemical reactions that cause association or dissociation of molecules
- 5. get the stoichiometry of the chemical reactions right
 - balence atom composition (and mass)
 - invariant between organisms, independent of changes to conditions
- get the thermodynamics of the chemical reactions right
 - balence energy, derive relative rates of reactions
 - dependent on changes to (physiological) conditions
 - sequence alteration in binding surfaces can alter the thermodynamics of molecule association in different species
- get direction and absolute rate of reactions
 - determined by enzymes and their activity

The Cell as a Chemical Reaction Network

Stady-State Networks

- biological systems exist in a stady state (rather than in equilibrium)
- 6. boundaries for (Sub-)systems need to be defined
- a network is in stady-state if the in-flow is equal to the out-flow (i.e. no accumulation or depletion of molecules occurs)

The Interative Process of Network Reconstruction

- 1. identify relevant metabolic genes from genome annotation
- 2. translate gene functions into balanced chemical reactions
- 3. network assembly from individual reactions
- 4. problem of incomplete data: fill in missing reactions to satisfy stady-state assumption
- test the model *in silico* and compare results with physiological data
- 6. use gene essentiality date to validate reconstruction
- 7. refine interatively

The Interative Process of Network Reconstruction

Formulating Biochemical Reactions

Prokaryotes:

- extracellular space
- cytoplasm
- periplasm

Eukaryotes:

- mitochondria - extracellular space
- - peroxisome
- periplasm - lysosome
 - vacuole
 - Golgi apparatus endoplasmatic
 - reticulum

- cytoplasm

stoichiometric matrix

$$S_{mv} = egin{pmatrix} 0 & 0 & 1 \ 0 & -1 & -1 \ 0 & -1 & 0 \ -1 & 1 & 1 \ 0 & 0 & -1 \ 1 & 0 & 0 \end{pmatrix}$$

- ▶ while *m* are the metabolites, *v* are the fluxes/reactions
- ▶ a stoichiometric matrix S transforms the flux vector $v = (v_1, v_2, ..., v_n)$ into a vector of time derivates of the concentration vector $x = (x_1, x_2, ..., x_n)$
- $\frac{dx}{dt} = Sv$, stady state balance Sv = 0
- $\frac{dx_i}{dt} = \sum_k S_{ik} v_k$ is the sum of all fluxes producing or consuming x_i

stoichiometric matrix

$$S_{mv} = egin{pmatrix} 0 & 0 & 1 \ 0 & -1 & -1 \ 0 & -1 & 0 \ -1 & 1 & 1 \ 0 & 0 & -1 \ 1 & 0 & 0 \end{pmatrix}$$

$$m_1 = c_1$$
; $m_2 = c_2$; $m_3 = c_3$; $m_4 = c_2c_3$; $m_5 = c_1c_3$; $m_6 = c_3c_2$

- ▶ reversible convertion: $c_2c_3 \xrightarrow{v_1} c_3c_2$
- ▶ bi-molecular association: $c_s + c_3 \xrightarrow{v_2} c_2 c_3$
- ▶ cofactor-coupled reaction: $c_2 + c_1 c_3 \xrightarrow{v_3} c_2 c_3 + c_1$ with c_1 as co-factor

network representation

- physiochemical constraints (inviolable)
 - mass, energy and momentum conserved
 - ▶ slow diffusion of macromolecules in viscous medium
 - reaction rates determined by local consentrations
 - reactions proceed in the direction of negative free-energy change
- spatial contraints
 - transport, structures
 - e.g. length, packaging and accessibility constrain arrangement of DNA
- environmental contraints
 - e.g. nutrient availability, temperature and osmolarity
 - important to determine phenotypic properties and fitness
- regulatory (self-imposed) constraints
 - allow the cell to eliminate suboptimal phenotypic states
 - e.g. transcriptional, translational, enzyme activity regulation

Given the Network...

- sample the network and study network properties
 - population of the flux space
 - interdipendencies and complexity
 - robustness to disturbance
 - flexibility to adopt to changing environments
- given an objective function linear optimization or linear programming can be used to calculate one optimal reaction network state (e.g. optimal growth)
- ▶ in large, more interconected networks alternative optima can be examined with mixed-integer LP algorithms
- optimize overproduction of a product: simultaneously optimize growth and secrection of the target product by (multiple) gene deletion.

References

[Choi, 2007] Sangdun Choi. Introduction to Systems Biology.

[Kaneko, 2006] Kunihiko Kaneko. Life: An Introduction to Complex Systems Biology.