UNIVERSITÄT LEIPZIG

Fortgeschrittene Methoden in der Bioinformatik

IMAGE PROCESSING - FRUIT FLY GENE EXPRESSION PATTERN ANALYSIS

Andreas Heffel (Dipl. Bioinf.) Raum 440.1 Tel: 0341 97 - 16665 E-Mail: andreas@bioinf.uni-leipzig.de

Drosophila melanogaster Gene Expression Patterns (GEP) whole-mount mRNA *in situ* hybridization

Digital images are represented on regular grids

Picture x Element
Pixel values: {x}
8-bit Range: [0,...,255]

200	160	170
90	210	180
180	200	240

Digital images are represented on regular grids

Picture x Element Pixel values: {x,y,z} 8-bit Range: [0,...,255]

200	160	160
140	130	130
130	225	198
145	130	160
131	148	130
225	240	138
227	214	160
130	215	130
225	156	179

Digital images can be represented with discrete functions

$$f(x, y) = \begin{pmatrix} f(0, 0) & f(0, 1) & f(0, N-1) \\ f(1, 0) & f(1, 1) & f(1, N-1) \\ & & & & \\ f(M-1, 0) & f(M-1, 1) & f(M-1, N-1) \end{pmatrix}$$

Or with continues functions, after interpolation

Various Color Models are available to code a pixel value
The Gray Scale Model is a 1D List of GS Values

255

The RGB Color Space is a 3 dimensional Cube

RGB image mapped to the RGB Color Space

Image Convolution, Filtering

High-pass and low-pass filter kernel

Image Processing Goal

The creation of a process flow that allows an automatic image classification and analysis of embryonic gene expression patterns from fruit fly ISH experiments

GEP Imaging Complications

background shading

coherent partial embryos

GEP Imaging Complications

poor contrast

blurred contours

Requierements on the Processing pipeline

Embryo Shape Segmentation Allignement of Shapes **GEP** Extraction **GEP Representation** Metadata generation -Developmental stage -Orientation GEP Clustering

Preprocessing

Shading correction

 $S_{cor}(x,y) = S(x,y) - S_{smoth}(x,y)$

Contrast optimization

 $P_{cont}(x,y) = (S(x,y) - Min(S) \times \frac{Max(S) - Min(S)}{255}$

Shape Segmentation

Feature space: gradient magnitude
Method: Estimating Gaussian Mixture Densities with the Expectation-maximization algorithm

Feature: Mean

Mean

Feature: Standard Deviation

Standard Deviation

Feature: Gradient Magnitude

Gradient Magnitude

Gaussian Mixture Model

Gaussian parameters are estimated with the Expectation Maximasation Algorithm via maximum likelihood estimation

$$P(x) = \sum_{i=1}^{n} a_i G(x;\theta)$$

Shape Segmentation

Denoising: Total variation filter
Close holes
Remove other partial embryos

Shape Segmentation

How to isolate coherent embryos?

Active Contour Approach GVF Snakes

Compute Gradient Vector Field
Define parameterized curve along initial shape
Define energy cost function along the curve

$$E_{snake} = \alpha \int_{a}^{b} E_{int}(v(s))ds + \beta \int_{a}^{b} E_{image}(v(s))ds + \gamma \int_{a}^{b} E_{con}(v(s))ds$$

with

$$E_{int} = (\alpha_1 |x_s(s)|^2 + \alpha_2 |x_{ss}(s)|^2)/2$$

$$E_{image} = (g(|\nabla I((x(s))|))^2)$$

Shape Segmentation -
Active Contour Approach - Snakes
• A snake that minimizes *E* must satisfy the Euler equation
$$E_{snake} = \alpha_1 x_{ss}(s) - \alpha_2 x^{(iv)}(s) - \nabla E_{image} = 0$$

• Interpreted as a force balance problem this would mean
 $F_{int} + F_{image} = 0$.

The numerical solution procedure is obtained by using a dynamic scheme. For this purpose an artificial time parameter is introduced.

Shape Segmentation -Isolate Coherent Embryos

- Active Contour Approach GVF Snakes
 Marker particles are placed along an initial ellipsoidal contour.
 - Evolution toward maximum gradient regions

Alligning the Shapes

Rigid Registration Distance measure:

$$D(u) = \frac{1}{2} \int_{\Omega} (R(x) - T(x - u(x)))^2 dx$$

Registration: $min(T(u)) = min(D(u) + \alpha S(u))$

Alligning the Shapes

Rigid Registration Distance measure:

$$D(u) = \frac{1}{2} \int_{\Omega} (R(x) - T(x - u(x)))^2 dx$$

Registration: $min(T(u)) = min(D(u) + \alpha S(u))$

Metadata extraction

The outline is used to anotate the stage of the embryo

Metadata extraction

The orientation is corrected by rigid registration to a stage specific standard shape

Transformation of Outline to Ellips curvature based Nonlinear Registration

Curvature Based Nonlinear Registration

 Minimal difference between the template and reference shape

$$minT(u) = min(D(u) + \alpha S^{curv}(u))$$

With the smoothness term

$$S^{curv} = \frac{1}{2} \int_{\Omega} (\Delta u)^T \cdot (\Delta u) dx$$

Transformation of Outline to Ellips curvature based Nonlinear Registration

Segmentation of the GEP

HSB Colorspace Transformation

S-channel, denoising

The HSB Color Space

Cone representation of the HSB Color Space

$$V = \frac{(\mathbf{R} + \mathbf{G} + \mathbf{B})}{3}$$

$$S = \begin{cases} \frac{V - \min(R, G, B)}{V}, & V > 0\\ 0, & V = 0 \end{cases}$$

$$H = \begin{cases} 0 + \frac{G-B}{\max - \min}, & R = \max(R, G, B) \\ 2 + \frac{B-R}{\max - \min}, & G = \max(R, G, B) \\ 4 + \frac{R-G}{\max - \min}, & B = \max(R, G, B) \end{cases}$$

Why HSB Color Space?

- Artificial exaple image transformated to HSB
- H: color Hue (wavelegth)
- S: Color Saturation
- B: Brightness or Illumination

GEP Classification Fourier Coefficients

The patterns are described by a set of Fourier coefficients.

$$\mathcal{P}(r,\phi) = \sum_{j=1}^{\infty} \sum_{k=0}^{\infty} a_{j,k} \psi_{j,k}(r,\phi)$$

As basis, the eigenfunctions of the Laplace operator on a circle of radius l are used.

$$\psi_{j,k}(r,\phi) \equiv N_{j,k} e^{ik\phi} J_k\left(\frac{rj_{k,j}}{\ell}\right)$$

Complete orthonormal system

$$\psi_{j,k}(r,\phi) \equiv N_{j,k} e^{ik\phi} J_k\left(\frac{rj_{k,j}}{\ell}\right)$$

Representation with a set of 420 Fourier coefficients

$$a_{j,k} = \int_0^\ell \int_0^{2\pi} \psi_{j',k'}^*(r,\phi) g(r,\phi) r \, \mathrm{d}\phi \mathrm{d}r$$

420 Fourier Coefficients *k*: [0,...,20] *J*: [1,...,20]

Overview Processing Pipeline

GEP Clustering

Hierarchical clustering of the absolute values of the coefficient sets using Euclidean norm with an agglomerative algorithm.

Clustering on subsets from dev. stage 4 and 5

