Image Processing in Bioinformatics part of "Fortgeschrittene Methoden in der Bioinformatik"

Sonja Prohaska

Professorship for Bioinformatics University Leipzig

Leipzig, WS 2009/10

ヘロト 人間 ト イヨト イヨト

3

Outline

(日)

Image Data in Bioinformatics

- in situ hybridization (ISH)
 - localization of DNA/RNA targets
 - DNA/RNA probes
 - radio-, flurescence- or antibody-labeling
 - for light- and electrone microscopy
 - multicolor ISH
 - tissue slices, whole-amount objects
 - live-cell imaging
- immunohistochemistry (IHC)
 - localization of protein targets
 - anti-target antibodies as lables
 - detection systems as for ISH
 - Multi-Epitope-Ligand-Cartography/Toponomics
 - tissue slices, whole-amount objects

ヘロア 人間 アメヨア 人間 アー

http://www.youtube.com/watch?v=P7m3WfzgZdI

・ロト ・日 ・ ・ ヨ ・ ・

ъ

Concept of in situ hybridization

< ロ > < 同 > < 回 > < 回 > < □ > <

э

Labeling: Nick Translation

< ロ > < 同 > < 回 > < 回 >

Labeling: Random Priming

▲ロ → ▲圖 → ▲ 画 → ▲ 画 → …

æ

Labeling: 5'-end Labeling

- ³⁵S 87.2 days
- ³²P 14.3 days
- ³H 12.43 years

・ロト ・聞 ト ・ 国 ト ・ 国 ト …

Labeling: Radioactive Labeling

disadvantages

- safety problems
- isotopes vary in exposure time and stability only
- instability
- time-consuming

advantages

- high sensitivity, signal amplification
- lower probe concentration (10-50 fold)
- chemically identical probes
- easy access to the target

・ロト ・聞 ト ・ 国 ト ・ 国 ト ・

э

Labeled Nucleotides

Spacer arms allow base paring and make the marker accessible to detection.

< □ > < 同 > < 回 > <</p>

э

Detection Systems: Signal Amplification

(日)

æ

Detection Systems: Strong Signal Amplification

< 🗇 🕨 <

Why is this interesting to bioinformaticians?

- biotin labeling: endogenous biotin can cause false positives
- digoxigenin labeling: only in *Digitalis sp.*, otherwise less false positives
- unspecific binding events? (avidin versus streptavidin)
- Can low amounts of targets be detected?
- Do labeling and amplification steps allow quantitative analysis?
- Is the amount of target in a linear relationship to the staining intensity?

・ロト ・聞 ト ・ 国 ト ・ 国 ト …

э.

Amount of Target RNA/DNA Versus Staining Intensity

С

Hybridization signal vs target blotted

Direct and Indirect Immunohistochemistry

▲ロ → ▲圖 → ▲ 画 → ▲ 画 → …

æ

MELK and Toponomics

▲□▶ ▲□▶ ▲三▶ ★三▶ 三三 のへで

MELK and Toponomics

э

- BDGP FlyExpress (fly)
- ZFIN (zebrafish)
- GEISHA (chicken)
- EMAGE (mouse)

・ロト ・聞 ト ・ 国 ト ・ 国 ト ・

Drosophila Development

Youtube:

http://www.voutube.com/watch?v=Lb6TJzTLa E ? ? ?

Sonja Prohaska

Image Processing

BDGP Raw Data

From the *in situ* image to the comparison of spatial expression patters

pay attention to:

- images from the same developmental stage and
- same view
- alignment of anterior anterior, ventral ventral, etc.
- inferrence of target localization/concetration from staining
- quantitative/qualitative measure of similarity/correlation

From the *in situ* image to the comparison of spatial expression patters

processing steps:

- cut out embryo
- determine view, orientation
- standardize embryos
- extract staining
- compare distribution of stain from embryo 1 and embryo 2

Be Careful with Biological Conclutions

- mRNA distribution does not necessarely reflect protein distribution
- mRNAs in situ patters are found to overlap
 - does not necessarely mean interaction of the gene products (A interactis with B)
 - does not necessarely indicate co-regulation (A and B are regulated by a set of common TFs)
 - does not necessarely indicate a positive regulatory interaction

(A enhances B or B enhances A)

< □ > < 同 > < 回 > <