
Mutation Rates and Sequence Changes part of "Fortgeschrittene Methoden in der Bioinformatik"

Sonja Prohaska

Professorship for Bioinformatics University Leipzig

Leipzig, WS 2010/11

From Molecular to Population Genetics

Nucleotide Exchanges

transition: exchange purine for purine ($C \leftrightarrow T$) or pyrimidine for pyrimidine ($A \leftrightarrow G$)

transversion: exchange purine for pyrimidine or pyrimidine for purine (C \mid T \leftrightarrow A \mid G)

synonymous substitution: nucleotide changes that are functionally neutral

nonsynonymous substitution: nucleotide changes that change the function

Estimating Mutation Rates

- take two species that diverged a time T ago (i.e. hat a common ancestor a time T ago)
- select regions that
 - are 1:1 orthologs of each other (i.e. have a common ancestral sequence in the common ancestor and were not duplicated since)
 - evolved neutrally (i.e. were not under positive or negative selection since their divergence from the common ancestor)
 - can be aligned without errors
- count the number of substitutions
- correct for reversion and multiple mutations at the same site and biases
- devide the number of nucleotide exchanges (mutations) by
 T

Purifying versus Positive Selection I

- Selection can only occure at nonsynonymous sites.
- Mutations fixed by **purifying selection**: the rate of fixation of synonymous changes is greater than the rate of fixation of nonsynonymous changes (ω_S < 1).
- Mutations fixed by **positive selection**: the rate of fixation of nonsynonymous changes is greater than the rate of fixation of synonymous changes ($\omega_S > 1$).

$$\omega_{S} = \frac{d_{N}}{d_{S}} \tag{1}$$

 $\omega_{\mathcal{S}}$... selection ratio

 $d_{\rm s}$... synonymous divergence per synonymous site

 d_N ... nonsynonymous divergence per nonsynonymous site

Purifying versus Positive Selection II

The following would be more accurate:

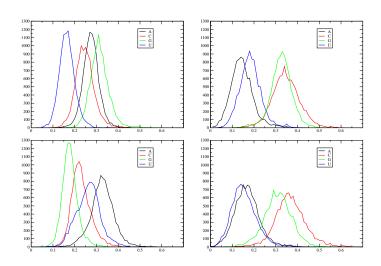
$$\omega = \frac{d_N/2T}{\mu_N} \tag{2}$$

The selection ratio ω is the ratio of the rate of nonsynonymous substitutions per site d_N to the rate of nonsynonymous mutations per site μ_N .

How can we estimate μ_N ?

4-fold Degenerate Sites

	second base in codon												
		U	С	Α	G								
first base in codon	U	UUU Phe UUC Phe UUA Leu UUG Leu	UCU Ser UCC Ser UCA Ser UCG Ser	UAU Tyr UAC Tyr UAA stop UAG stop	UGU Cys UGC Cys UGA stop UGG Trp	U C A G							
	С	CUU Leu CUC Leu CUA Leu CUG Leu	CCU Pro CCC Pro CCA Pro CCG Pro	CAU His CAC His CAA GIn CAG GIn	CGU Arg CGC Arg CGA Arg CGG Arg	third base							
	Α	AUU IIE AUC IIE AUA IIE AUG Met	ACU Thr ACC Thr ACA Thr ACG Thr	AAU Asn AAC Asn AAA Lys AAG Lys	AGU Ser AGC Ser AGA Arg AGG Arg	U C A G							
	G	GUU Val GUC Val GUA Val GUG Val	GCU Ala GCC Ala GCA Ala GCG Ala	GAU Asp GAC Asp GAA Glu GAG Glu	GGU GIY GGC GIY GGA GIY GGG GIY	U C A G							


?-fold degenerate site: ? = the number of different nucleotides that can occure at the site without changing the protein sequence

CU*							
AC*	Thr	GC*	Ala	CG*	Arg	GG*	Gly

Assumption: 4-fold degenerate sites are synonymous sites.

Nucleotide Occurence at Codon Positions in Drosophila melanogaster

Why are nucleotide frequences different for different codon positions?

Potential Causes

- codon usage bias
- base composition bias
- selective constraints on other levels than the coding sequence

Estimating the Codon Usage Bias I

Relative Synonymous Codon Usage (RSCU)

$$E(X_{ij}) = \frac{\sum_{j} X_{ij}}{n_{ij}} \tag{3}$$

$$RSCU_{ij} = \frac{X_{ij}}{E(X_{ij})} = X_{ij}/(1/n_i \sum_{j=1}^{n} X_{ij})$$
 (4)

i ... index running over the 20 amino acids j_i ... index running over the codons for amino acid i n_{ij} ... the number of different codons for amino acid i observed number of codon j for amino acid i

 $RSCU_{ij} = 1$ usage of codon j is neither preferred nor avoided $RSCU_{ij} > 1$ codon j is used preferentially $RSCU_{ij} < 1$ codon j is avoided

Estimating the Base Composition Bias

Base Composition Skew (BCS)

$$BCS = \sum_{n_i \in \{ACGT\}} (n_i - E(n_i))^2$$
 (5)

Sum of the squared deviation of the observed nucleotide frequency from the expected nucleotide frequency $E(n_A) = E(n_T) = E(n_G) = E(n_G) = 0.25$.

Genomic Mutation Distances

$$d_{Sg} = (1 - f_g)d_{\mu g} \tag{6}$$

 d_{Sg} ... synonymous distance for gene g according to the Tamura-Nei model

 f_g ... fraction of mutations underestimated due to biases

 $d_{\mu g}$... mutation distance for gene g

$$f_g = \eta BCS_g \tag{7}$$

 BCS_g ... base compostion skew for gene g

 η ... obtaind by divinding the absolute value of the slope of the linear regression of *BSC* on d_S by the y-intercept of the regression line

References

- [Filipski, 2008] Alan Filipski, Sonja J. Prohaska and Sudhir Kumar. *Molecular Signatures of Adaptive Evolution*. in "Evolutionary Genomics and Proteomics" edited by Mark Pagel; Sinauer Associates, Inc. Sunderland 2008. Chapter 11, p241-254.
- [Tamura, 2004] Koichiro Tamura, Sankar Subramanian and Sudhir Kumar. *Temporal Patterns of Fruit Fly (Drosophila) Evolution Revealed by Mutation Clock.* Mol. Biol. Evol. 2004. 21(1), p36-44.