
Solution sheet

High Throughput Sequencing Methods
Bioinformatics Leipzig

WS 13/14

Solution sheet

1 Bowtie

1. Bowtie searches subsequences in a given genome or sequence to know where exactly the subsequences
are located in the genome.

2. Methods used: Suffix arrays to store all possible suffixes of the genome in an ordered way; BWT:to
store the genome data in an efficient way (less storage space);FM-index: to find positions faster using
just a bit more storage.

1.1 Suffix array

pos source index suffix

1 14 $
2 10 atik$
3 1 bioinformatik$
4 6 formatik$
5 12 ik$
6 4 informatik$
7 2 ioinformatik$
8 13 k$
9 9 matik$
10 5 nformatik$
11 3 oinformatik$
12 7 ormatik$
13 8 rmatik$
14 11 tik$

Since the suffixes are in alphabetical order, just the source index column can be used as the suffix array.

BWT table:
pos source index suffix letter

1 14 $bioinformati k
2 10 atik$bioinfor m
3 1 bioinformatik $
4 6 formatik$bioi n
5 12 ik$bioinforma t
6 4 informatik$bi o
7 2 ioinformatik$ b
8 13 k$bioinformat i
9 9 matik$bioinfo r
10 5 nformatik$bio i
11 3 oinformatik$b i
12 7 ormatik$bioin f
13 8 rmatik$bioinf o
14 11 tik$bioinform a

1.2 Burrows Wheeler Transformation

First, get the second column by sorting the given letters alphabetically. Then do the BWT backwars. The
string is: ALGORITHMUS.

Luckily this isn’t a sausage... Page 2 of 5

Solution sheet

1.3 FM-index

sequence: GCGAATATCTGAAATGCTTA

pos source index suffix letter

0 21 $ A
1 20 A$... T
2 12 AAATG... G
3 4 AATAT... G
4 13 AATGC... A
5 5 ATATC... A
6 7 ATCTG... T
7 14 ATGCT... A
8 2 CGAAT... G
9 9 CTGAA... T
10 17 CTTA$... G
11 11 GAAAT... T
12 3 GAATA... C
13 1 GCGAA... $
14 16 GCTTA T
15 19 TA$... T
16 6 TATCT... A
17 8 TCTGA... A
18 10 TGAAA... C
19 15 TGCTT... A
20 18 TTA$... C

O-matrix

ind A C T G

0 1 0 0 0
1 0 0 1 0
2 0 0 1 1
3 0 0 1 2
4 2 0 1 2
5 3 0 1 2
6 3 0 2 2
7 4 0 2 2
8 4 0 2 3
9 4 0 3 3
10 4 0 3 4
11 4 0 4 4
12 4 1 4 4
13 4 1 4 4
14 4 1 5 4
15 4 1 6 4
16 5 1 6 4
17 6 1 6 4
18 6 2 6 4
19 7 2 6 4
20 7 3 6 4

C-array: (0,7,10,14)
Starting either by 0 or by 1 when counting the positions is both possible.
Find subsequence aW :
R = C(a) + O(a,R(W)− 1) + 1
R = C(a) + O(a,R(W))
whereas: R(∅) = 1 and R(∅) = n.

seq 1 letter 2 letters 3 letters

AAT T : a = T,W = ∅
R = 14 + 0 + 1 = 15
R = 14 + 6 = 20

AT : a = A,W = T
R = 0 + 4 + 1 = 5
R = 0 + 7 = 7

AAT : a = A,W = AT
R = 0 + 2 + 1 = 3
R = 0 + 4 = 4

CAA: A : a = A,W = ∅
R = 0 + 0 + 1 = 1
R = 0 + 7 = 7

AA : a = A,W = A
R = 0 + 1 + 1 = 2
R = 0 + 4 = 4

CAA : a = C,W = AA
R = 7 + 0 + 1 = 8
R = 7 + 0 = 7

TAT: T : a = T,W = ∅
R = 14 + 0 + 1 = 15
R = 14 + 6 = 20

AT : a = A,W = T
R = 0 + 4 + 1 = 5
R = 0 + 7 = 7

TAT : a = T,W = AT
R = 14 + 1 + 1 = 16
R = 14 + 2 = 16

The subsequence AAT can be found at positions 3 and 4 in the suffix array. The subsequence CAA
does not exist in the array since R > R. TAT exists once at position 16.

Luckily this isn’t a sausage... Page 3 of 5

Solution sheet

2 Segemehl

1. Segemehl works in a similar way as Bowtie, it also searches subsequences in a given sequence or genome.
It also outputs the positions of the subsequences in the given data.

2. Segemehl uses suffix trees. To easily correct mistakes it uses the longest common prefix array and the
so called suffix links, which are created by looking at the longest common prefixes of two strings.

2.1 Suffix tree

2.2 Longest common prefix

Mississippi$.

1. (ississippi, issippi, ippi, i), (ssissippi, ssippi, sissippi, sippi), (ppi, pi)

2. (ississippi, issippi), (ssissippi, ssippi), (sissippi, sippi)

3. (ississippi, issippi), (ssissippi, ssippi)

4. (ississippi, issippi)

banana$

1. (anana, ana, a) , (nana, na)

2. (anana, ana), (nana, na)

3. (anana, ana)

Luckily this isn’t a sausage... Page 4 of 5

Solution sheet

3 Sequence Assembly

3.1 De Bruijn Graphs

F = {ACGAACG, TGCTGAC,ACTGCT,AACGG,CTGACGA}

1. Set of 4-mers for each of the fragments:

• ACGA, CGAA, GAAC, AACG

• TGCT, GCTG, CTGA, TGAC

• ACTG, CTGC, TGCT

• AACG, ACGG

• CTGA, TGAC, GACG, ACGA

k-mers which occur more than once aren’t used usually, but in this way they help when creating the
De-Bruijn-Graph.

2. The De-Bruijn-Graph is created from (k − 1)-mers as nodes and edges which indicate that the nodes’
sequences overlap based on the information from the k-mers. The graph should look similar to the
following graph. There are 11 nodes and 11 edges.

CGG ACG CGA GAA AAC

GAC TGA CTG GCT TGC

ACT

3. There is one node in the graph (ACT) which only has an outgoing edge. This is the start node of the
Euler path. The node with just an incoming edge (CGG) is the end node of the Euler path. Every
edge in the path has to be used exactly once, the nodes can be used more than once. The numbers in
the graph give the way of the Euler path. The resulting sequence is:

ACTGCTGACGAACGG

13: CGG 8 and 12: ACG 9: CGA 10: GAA 11: AAC

7: GAC 6: TGA 2 and 5: CTG 4: GCT 3: TGC

1: ACT

Luckily this isn’t a sausage... Page 5 of 5

	Bowtie
	Suffix array
	Burrows Wheeler Transformation
	FM-index

	Segemehl
	Suffix tree
	Longest common prefix

	Sequence Assembly
	De Bruijn Graphs

