
“shiftSankoff-FM” — 2020/4/12 — 19:32 — page 1 — #1i
i

i
i

i
i

i
i

Preliminary Version for Advanced Methods Course ONLY

Incongruences Between Sequence and Secondary
Structure Alignments of Nucleic Acids
Maria Waldl(1), Christoph Flamm(1), Thomas Gatter(2), Christian Höner zu
Siederdissen(2), Michael T. Wolfinger(1), Sebastian Will(1), Ivo L. Hofacker(1),
Peter F. Stadler(2,1,3,4,5)

1Institute for Theoretical Chemistry, Universitä Wien, Währingerstraße 17, A-1090 Vienna., Austria.
{maria,xtof,mtw,ivo,studla,will}@tbi.univie.ac.at
2Department of Computer Science and Interdisciplinary Center for Bioinformatics, Universität Leipzig, Härtelstraße 16-18, D-04109
Leipzig, Germany. studla@bioinf.uni-leipzig.de
3Max Planck Institute for Mathematics in the Sciences, Inselstraße 22, D-04103 Leipzig, Germany
4Facultad de Ciencias, Universidad National de Colombia, Bogotá, Colombia
5Santa Fe Institute, 1399 Hyde Park Road, Santa Fe NM 87501, USA

Abstract

This is a preliminary draft of a research manuscript in preparation. It is intended only as accompanying
material for the course “Advanced Methods in Bioinformatics” at Leipzig University and will soon be
superseeded by a complete manuscript.

Motivation:
Independent selection pressures on sequence elements and secondary structure may result in
incongruencies between sequence alignments and strueture alignments of the same molecules: Even
though the structure are highly similar, base pairs not formed between homologous sequence positions
and – conversely – structurally analogous base pairs involve non-homologous sequence positions. No
single alignment is capable of faithfully representing such cases. Instead a pair of coupled alignments,
one representing sequence evolution and one describing evolution of the structures must be employed.

1 Introduction
Most proteins and RNAs require specific three-dimensional functions to
perform their biological functions. As a consequence, mutations tend
to preserve secondary structure elements. In RNA this usually implies
the conservation of individual base pairs. Families of homologous RNAs
therefore often feature a well-defined consensus structure. Nevertheless,
there are also abundant variations, in particular insertions and deletions of
local structural elements (Brown & Pace, 1991; R. et al., 1994; Williams
& Bartel, 1996).

Compensatory substitutions, i.e., substitutions that remedy an earlier
(sligthly) deleterious substitution seem to be abundant in both proteins and
RNAs (Ivankov et al., 2014). In RNAs, they most commonly result in the
replacement of a base pair by another one (Stephan, 1996). In proteins,
similar local compensation can be observed albeit it follows less obvious
rules (DeJuan et al., 2013). Compensatory evolution is not restricted to
substitutions. Although indels are often associated with structural shifts,
they may be compensated by indels at other locations(Zhang et al.,

2011). For example, the deletion of an aminoacid at the N-terminus of
a polypeptide might be compensated by an insertion at the C-terminus.
Non-local structural compensation also has been observed for RNAs,
where it appears for instance in the form of length compensation of two
helices (Lacroix-Labonté et al., 2012). For RNA secondary structure it
straightforward to design examples of structural compensation:

CGUGGAAACCCACAG CGUGAAACCUCACAG

.((((....)))).. .((((....))))..

CGUGGAAACC-CACAG .((((....))))..

CGU-GAAACCUCACAG .((((....))))..

(1)

Instead of preserving the structure exactly, we might also tolerate a shift
of the helix

CGUGGAAACCCACAG CGUGGGAAACCCCAG

.((((....)))).. ..((((....)))).

CGU-GGAAACCCACAG -.((((....))))..

CGUGGGAAACCC-CAG ..((((....)))).-

(2)
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The key point about these examples is that some of the analogous base pairs
in the two helices are formed by non-homologous bases, and conversely,
the evolutionary correct alignment no longer forms a consensus structure.
It is, in fact, not difficult to construct shifted structures form very similar
sequences even without the need to resort to obvious insertions and
deletions:

..((((.((((....))))..))))....

AAGGCUCUAUUAACUGGUAUCGGCUAUAG

** * ***** ***** **** * * ***

AAUGAUCUAUGAACUGUUAUCUGAUUUAG

...((((.((((....))))..))))...

(3)

In this rather extreme example, none of the eight base pairs is preserved
even though the secondary is identical except for the shift by a single base
pairs and the sequence similarity is just above 75%. Helix shifts are in
fact evolutionarily possible even in the absence of indels are possible:
As shown by Flamm et al. (2000), for any pair of arbitrarily chosen
secondary structures of the same length there are sequences that can
form both structures, and it is often possible to find sequences for two
structural alternatives are dominating the equilibrium ensemble (Höner zu
Siederdissen et al., 2013). In summary, negative selection acting to
preserve even of large secondary structure elements does not necessarily
imply that base pairs are preserved between homolgous nucleotides.
Instead, the evolution of sequence and structure may be incongruent.

In this contribution we aim to develop a computational method to
detect this kind of incongruent evolution in RNAs. We will start from
the observation that the alignments implied by sequence similarity and
the alignments implies by similarity of secondary structures cannot be
reconciled in the form a sequence alignment annotated by a consensus
structure. Instead, we formalize the reconciliation of two alignments of
the same pair of RNAs as a bi-alignment (Waldl et al., 2019), that is, and
alignment of alignments that scores their incongruence. In section 2 we
introduce the sequence version of the bi-alignment and show that it reduces
to a 4-way alignment problem. When then demonstrate in section 3 that
an extension of the Sankoff algorithm for the simultaneous folding and
aligning of two RNAs (Sankoff, 1985) solves the bi-alignment problem that
models the incongruent evolution of RNA sequences and RNA secondary
structures.

2 Bi-Alignments of sequence pairs
Since corresponding structural features are not necessarily formed by
homologous sequence position, and homologous sequence positions not
necessarily from consensus base pairs, sequence and structure must be
represented by separate alignments. The two alignments are not viewed as
independent, however. The key idea of bi-alignments is to consider them
as linked in the following sense: Locally they are congruent if they have
the same gap pattern. A difference in the gap patterns of “corresponding”
alignment columns, on the other hand, implies an incongruence that shifts
the two alignments, and thus sequence and structure, relative to each other
(Waldl et al., 2019). For illustrative purposes consider the following pair
of pairwise alignments:

1 2 3 4 5 6 7 8 9 1 2 3 4 - 5 6 7 8 9

m m d d m m d d m d m m m i m d d d d

a b - - c d - - e - a b c d e - - - -

(4)

where the middle row represents (mis)matchesm, insertionsi and deletions
d. These strings can also be aligned e.g. as

- m m d d m m d d m

| | | | |

d m m m i m d d d d

(5)

thus establishing a correspondence between columns of the two
alignments. Matches, |, denote congruent steps, while mismatches and
indels are incongruent steps. This suggests to formalize the problem as
follows:

We consider two sequences a and b (in more generality, two finite
ordered sets of positions) and two alignments of these sequences, denoted
byU andV. The alignments are evaluated with respective scoring functions
u and v, for instance a sequence and a structure scoring function. Note that
each of these two pairwise alignment is faithfully represented by the string
denoting insertions, deletions, and (mis)matches. A pairwise alignmentW
ofU andV is therefore well defined as a pairwise alignment of these strings.
Introducing a scoring functionw forW, we can describe the Bi-Alignment
Problem as finding alignments U, V, and W (W being an alignment of U
and V) such that the total score

u(U) + v(V) + w(W) (6)

is optimized. Before we proceed, we note that the bi-alignment has a natural
representation as a 4-way alignment. This is an immediate consequence of
the fact that arbitrary 4-way alignments can be obtained by progressively
aligning two pairwise alignments, see (Berkemer et al., 2018) for a formal
analysis of the compositional properties of alignments over general data
structures. In the 4-way alignment bothx andy appear twice: every column
of W contains either a column of of both U and V or gap in either U or
V, which in the 4-way picture is either a pair of gaps in the first or second
pair of rows:

- 1 2 3 4 5 6 7 8 9

- m m d d m m d d m

- a b - - c d - - e - 1 2 3 4 5 6 7 8 9

| | | | | | - a b - - c d - - e

1 2 3 4 - 5 6 7 8 9 1 2 3 4 - 5 6 7 8 9

d m m m i m d d d d - a b c d e - - - -

- a b c d e - - - -

(7)

If the scoring functions u, v, and w are additive, i.e. if they are additively
composed of scores defined on single alignment columns, then the total
score is also additive. Each column in the 4-way alignment contributes to
components of the total score from Equ. (6): to u(U) for the first pair of
entries unless both are gaps; to v(V) for the second pair of entries unless
both are gaps; and to w(W) to score the combination of mis-matches,
indels, or gap-pairs between formed by the first two and the last two entries
in a column. The column score thus depends only the gap pattern in the
column itself.

For additive cost functions, the bi-alignment problem therefore reduces
to a 4-way alignment problem with a linear gap cost model (Waldl et al.,
2019), which is readily solved by dynamic programming (Lipman et al.,
1989). This is not the case, of course, ifu or v are scoring functions that are
non-local, i.e., for scoring functions consider more than a single alignment
column. We note that the bi-alignment problem for sequences my be
of interest e.g. a means of studying alternative alignments for different
scoring models (Vingron & Waterman, 1994). This is even of interest for
RNAs, where one can use a nucleotide scoring model and a position based
secondary structure score as used e.g. in (Dalli et al., 2006).

In order to simplify the presentation below we will represent the
recursions in grammar form. For pairwise alignments with linear gap costs,
for instance, we can write the Needleman-Wunsch recursion as

A→ A( •• )
∣∣ A( •− ) ∣∣ A(−• ) ∣∣ ε , (8)

where ε denotes the empty alignment and m = ( •• ), d =
( •
−
)

and i =
(−
•
)

denote an alignment column containing a (mis)match,
deletion, and insertion, respectively. A bullet • represent a letter and −
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is used as gap symbol. Note that the alternative cases in Equ. (??) are
independent of the actual sequences. Only the scoring associated with
each production depends on the annotation associated with the sequence
positions (Giegerich et al., 2004). 4-way alignments can be written in
exactly same way, using fifteen 4-dimensional terminals in addition the
symbol ε, which now represents with empty 4-way alignment:

A→ A

 •••
•

 ∣∣ A •••
−

 ∣∣ A ••−
•

 ∣∣ · · · ∣∣ A−•−
−

 ∣∣ A •−−
−

 ∣∣ ε . (9)

We denote the set of the 15 terminal vectors by C. The scoring function
w is evaluated in each colum by comparison of the first and last pair of
entries of a 4-way column. Since every difference corresponds to a shift,
there is penalty of ∆ is the first and third or second and fourth entry are
equal, and a penalty of 2∆ if both a and b behave differently. This yields
the scoring table ( •

•
) ( •
−

) (−
•
) (−
−

)
( •
•
)

0 ∆ ∆ 2∆( •
−

)
∆ 0 2∆ ∆(−

•
)

∆ 2∆ 0 ∆(−
−

)
2∆ ∆ ∆ -

(10)

Since matching
(
−
−

)
to

(
−
−

)
does not occur in valid alignments, we

leave it undefined in this table. In order to link grammar and recursion we
interpret a each of the terminal vectors also as vector with entries 1 (for a
bullet •) and 0 (for a gap character−). Letx be a 4-dimension index vector
with entries x1, x3 ∈ [0, len(a)] and x2, x4 ∈ [0, len(b)] and letM(x)

denote the optimal score of an alignment of the prefixes a[1, x1], b[1, x2],
a[1, x3], and b[1, x4], where prefixes of the form [1, 0] are considered
empty. The entries of the dynamic programming table M satisfy

M(x) = max
c∈C

M(x− c) + s(x, c) (11)

with base case M(0) = 0 and column scores s(x, c). This compact
notation for the recursion was introduced by Setubal & Meidanis (1997),
see also (Retzlaff & Stadler, 2018). After defining xU =

(x1
x2

)
, cU =( c1

c2

)
, xV =

(x3
x4

)
, cV =

( c3
c4

)
, the scoring term can be written as

s(x, c) = us(xU, cU) + vs(xV, cV) + ws(x, c) (12)

such that us(xU, cU) yields, depending on cU being ( •• ),
( •
−
)
, or

(−
•
)
,

the (mis)match, deletion, and insertion scores at the respective positionsx1

andx2 ata andb for the first alignmentU; vs(xV, cV) yields the analogous
scores for V; and the shift scores ws(x, c) are defined in Equ. (10) in
a position-independent manner. They could be made position-dependent
without algorithmic changes, hence we write them in full generality here.
In the following we will further abbreviate Equ. (9) as A→ Ac

∣∣ ε with
the understanding that c denotes all 15 alternative terminal vectors c ∈ C.

3 Sankoff-style Bi-Alignments
The Simultaneous Alignment and Folding Problem asks for a pairwise
sequence alignment U of two input sequences a and b and a consensus
structure ϕ, i.e., a set of base pairs defined on the columns of U
that optimizes a scoring function that evaluates both the quality of the
sequence alignment and the common secondary structures. Depending on
the scoring model, different variants of the Sankoff algorithm solve this
optimization problem by dynamic programming (Sankoff, 1985). In one
class of approaches, exemplified by dynalign (Harmanci et al., 2007)
and foldalign (Havgaard et al., 2007), the full, “loop-based” Turner
energy model (Turner & Mathews, 2010) to score the consensus structure.
In pmcomp (Hofacker et al., 2004) and its successors such as locarna
(Will et al., 2007), individual base pairs and unpaired positions are scored

in an additive manner. In our condensed grammar notation, thinking of both
non-terminals and terminals as 2-dimensional, i.e., alignment columns
formed from the two input sequences, the underlying recursions are of the
form

A→ Ac
∣∣ Ac̄Ac̄ ∣∣ ε (13)

where A → Ac describes alignment columns that are unpaired in in the
consensus structure ϕ. These are scored as before describes a sequence
alignment. The second term, A → Ac̄Ac̄ describes the formation of a
consensus base pair. It is important to note that the corresponding scoring
function contains a term that simultaneously scores the pair of terminals
c̄, c̄, i.e., base pairs.

In order to study bi-alignments composed of pure sequence alignment
and an alignment with consensus structure we first introduce a slightly
more general optimization problem that is easy to specify and has an
efficient exact solution by dynamic programming. We will then show that
the mixed sequence/structure bi-alignment problem that we are interested
in constitutes a natural restriction of the general case and can be solved
with the same algorithmic approach.

Given a multiple alignmentX, a consensus structureϕ is an annotation
of the columns ofX that defines a column either to be unpaired or to belong
to a unique base pair. In this contribution we are only interested in nested
structures, although various classes of non-nested, i.e., pseudoknotted
structures might also be of interest. A sub-alignment of Y of X is obtained
by retaining a subset of the row of X and removing columns in which only
gap characters (−) are retained. The restriction of ϕY of ϕ to Y consist of
all base pairs of ϕ between alignment columns that are retained in Y. In
other words, if one of the two colums forming a base pair in ϕ is removed
in Y, the other one is relabeled as unpaired in ϕY.

Definition 1. The Simultaneous Bi-Aligmment and Folding Problem for
two sequences a and b asks for a bi-alignment S :∼= (U,V,W) of a and
b and a consensus structure ϕ defined on S, i.e., a set of disjoint pairs of
columns of S that optimizes a score function of the form

score(S, ϕ) = u(U, ϕU) + v(V, ϕV) + w(W)

where ϕU and ϕV are the restrictions of ϕ to two constituent sequence
alignments. The problem is additive if both u and v are sums of
contributions of the columns corresponding to unpaired position and base
pairs in ϕU and ϕV, respectively, and w is the column-wise shift score
defined above.

In the additive case, score(S, ϕ) is the sum of independent
contributions for the unpaired columns and paired column pairs of (S, ϕ),
respectively. More precisely, the cost function associated with the first
production, i.e., the alignment of unpaired columns of (S, ϕ) is s(x, c) as
defined in Equ. (12) for sequence alignments. For the paired columns of
(S, ϕ) the scoring function is

r(x, c; y, d) = ur(xU, cU; yU, dU)

+ vr(xV, cV; yV, dV)

+ ws(x, c) + ws(y, d)

(14)

where the shift scoresws are again given in Equ. (10) and the functions ur
and vr yield the scores for consensus base pairs in the second productions.

We are now in the position to derive the dynamic programming
recursions solving the Additive Simultaneous Bi-Aligmment and Folding
Problem. To this end, we denote byM(x, y) the optimal score of a Sankoff
bi-alignment of the infixes of a[x1 +1, y1], b[x2 +1, y2], a[x3 +1, y3],
and b[x4 + 1, y4], where indices 1 and 2 correspond to the alignment
(U, ϕU) and the last two coordinates 3 and 4 refer to (V, ϕV). It will be
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useful to define the set of ’allowed’ index combinations B∗ and the set of
’allowed’ pairs of gap patterns C∗ that have finite structure score by

B∗ := {(x, y)|∃c, d : r(z, c; y, d) > −∞}

C∗ := {(c, d)|∃x, y : r(z, c; y, d) > −∞}
(15)

We observe that a pair ((x, c), (y, d)) does not appear in the optimal
solution if the alternative of replacing the pair by two unpaired columns
(x, c) and (y, d) has a strictly better score. Therefore, we can restrict the
set of index pairs and gap patterns to those for which the paired scoring is
favorable at least sometimes:

B∗ := {(x, y)|∃c, d : r(z, c; y, d) > s(z, c) + s(y, d)}

C∗ := {(c, d)|∃x, y : r(z, c; y, d) > s(z, c) + s(y, d)}
(16)

Theorem 1. The scoring table M(,o)f the Additive Simultaneous Bi-
Aligmment and Folding Problem satisfies, for all index vectors x < y the
recursion

M(x, y) = max


max
c∈C

M(x, y − c) + s(y, c)

max
(z,y)∈B∗
(c,d)∈C∗

(
M(x, z − c) +M(z, y − d)

+r(z, c; y, d)

)
(17)

with initial conditions M(x, x) = 0 for all index vectors x.

Proof. By induction. Base case. Empty alignments have an empty
consensus structure and correspond to index pairs (x, x). By definition
they have score M(x, x) = 0. Induction step. The the last column
of an alignment, indexed by y, has as its consensus structure either an
unpaired column or the 3’-side of a base pair. In the latter case there is a
column z < y, corresponding to the 5’-side of the base pair, such that the
restrictions of the alignment to the columns before z and between z and
y, respectively, are again alignments with consensus structure because
base pairs of the consensus structure do not cross. It therefore suffices
for each index pair (x, y) to consider only alignments with consensus
structure If y is unpaired, it may have any gap pattern c ∈ C. For given
c, the previous column has index y − c, and thus additivity of the scoring
function implies that the optimal alignment with an unpaired last column
and gap pattern c has score M(x, y − c) + s(y, c). In the paired case
columns z and y have gap patterns c and d. Again invoking additive of
the scoring function and the fact that base pairs do not cross, we have
optimal scores M(x, z − c) and M(z, y − d) for fixed c and d, thus
M(x, y) = M(x, z − c) + M(z, y − d) + r(z, c; y, d) provided the
base pair can form. This is the case whenever the input sequences satisfy
the base pairing rules, and thus (z, y) ∈ B∗, and the pair of patterns
(c, d) statisfies the pertinent restrictions expressed by (c, d) ∈ C∗. By
construction,M(x, y) is the maximum score obtainable form the optimal
choice of c in the unpaired case and the optimal choices of pairing partner
z of y and, for each of these the best allowed choice of gap patterns c and
d.

Theorem 2. For shift penalties ∆ > 0, the number of shifts n in any
optimal bi-alignment S ∼= (U,V,W) is bounded by n∆ ≤ δ∗(a,b) with

δ∗(a,b) := max
U

u(U) + max
U

v(U)−max
U

[u(U) + v(U)] . (18)

Proof. Let S be optimal with score s∗; let n be its number of shifts. It
suffices to observe that s∗ + n∆ ≤ maxU u(U) + maxU v(U) since the
score of S consists of the score of its two constitiuent alignments, each of
which cannot be better then optimizing the alignments separately, minus
the shift penalty n∆. On the other hand, we have maxU[u(U) +v(U)] ≤

s∗ since two synchronized copies of an alignment U form a shift-free
bi-alignment with score u(U) + v(U).

The bound shows that sufficiently large ∆ completely rule out shifts in
the optimal bi-alignment. In this case the bi-alignment reduces to a simple
alignment optimizing the sum the cost functions u and v.

In practical applications, we are primarily interested in the case that the
first alignment is (scored as) a sequence alignment. To this end we observe
that c̄Ac̄ in the second production can be viewed as the extension of the
aligment of two infixes at both ends. In two dimensions, it therefore can
produce all possible pairwise alignments. In order to recover the score of
a pure sequence alignment it therefore suffices to score the two terminals
independently with the scores for a sequence alignment:

ur(xU, cU; yU, dU) = us(xU, cU) + us(yU, dU) (19)

i.e., additive scores the two columns xU =
(x1
x2

)
and yU =

( y1
y2

)
according to the corrsponding gap patterns cU =

( c1
c2

)
and dU =

(
d1
d2

)
,

respectively. For the second, structural, alignment (V, ϕV) we require that
consensus base pairs in ϕV can be cannot involve gaps and is formed by
aligning two canonical base pairs. Thus gap patterns must be of the form

(c, d) ∈ C′ :=

{−−•
•

,
 •−•
•

,
−•
•
•

,
 •••
•


}2

(20)

and thus we assume C∗ ⊆ C′. Furthermore, the allowed index pairs are
restricted to

B′=
{

(x,y)
∣∣ a[x3]a[y3],b[x4]b[y4]∈{GC,CG,GU,UG,AU,UA}

}
. (21)

We assume that non-canonical base pairs result in a ‘forbidden’ score of
−∞, i.e., we have B∗ ⊆ B′. The recursions in Thm. 1 thus remain
unchanged.

The scoring model of pmcomp (Hofacker et al., 2004) and locarna
(Will et al., 2007) evaluates consensus base pairs by the combination of a
sequence- and a structure-dependent term. The pairing propensity for base
pair (i, j) formed by sequence a is computed as

ψa(i, j) = log
paij

p0
/ log

1

p0
(22)

where paij is base pairing probability (of nucleotides i and j in a), and
ψb(k, l) is determined analogously. The sequence-dependent component
is usually of the form τ(i, j, k, l) = R(a[i],a[j];b[k],b[l]), where
the RIBOSUM score R( . ) is determined as a log-odds ratio for the
substitution of pairs of paired bases (Klein & Eddy, 2003) is used. We note
in passing that the scores used in locarna differ from (Klein & Eddy,
2003) due to the choice of a different different background model. We write
λ(i, j, k, l) := ψa(i, j)+ψb(i, j)+τ(i, j, k, l). For the bialignment, we
define the “locarna” scoring function for unpaired consensus positions
by s(x, c) = us(xU, cU), i.e., as a pure sequence contribution affecting
U only. For consensus base pairs, we use Eq.(19) for U and

vr(xV, ( •• ); yV, ( •• )) = λ(x3, x4, y3, y4)− us(xV, ( •• ))− us(yV, ( •• ))

(23)

for V, where we have used that only cV = dV = ( •• ) may appear
in a consensus base pair. By Thm. 2 the solution of the bialignment
problem for large penalties ∆ satisfies U = V and reduces to solving
to sequence-structure alignment problem with score u(U) + v(U), which
is exactly the scoring function of locarna due to our choices of s(x, c),
ur(xU, (; , .) ), and vr(xV, (; , .) ).
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4 Heuristic Speedups and Space Savings
The bi-alignment recursions of equ.(17) requireO(n12) time andO(n8),
rendering them unusable in practice. Already the complexity of the
underlying Sankoff algorithm (O(N6) time and O(N4) space), is often
prohibitive. locarna—and, to some extent, also other RNA alignment
tools based on Sankoff’s model—introduced heuristics for reducing
the complexity and achieving a reasonable performance for real world
applications. These ideas carry over to the bi-alignment problem.

For naturally evolved RNAs with a functionally relevant, conserved
structure we can expect that the number of shifts in the optimal bi-
alignment is small. We therefore restrict the entries of Mx,y be limiting
the total shift d(x) = |x1−x3|+ |x2−x4| in each alignment column x
by d(x) ≤ δmax. In addition, we can also limit the shift in every alignment
between two columns x < y by d(y − x) ≤ δmax. Note that Thm. 2
implies a non-heuristic bound of δmax = bδ∗(a,b)/∆c. In practise, even
small values of δmax are likely to suffice.

The sparsity of the structure space suggest an essential heuristic
of LocARNA, which is also of use here. Ignoring base pairs with
an equilibrium probability below a threshold value p∗, i.e., setting
ψa(i, j) = −∞ if paij < p∗, reduces the number of candidate base
pairs from quadratic to linear for each sequence. This prunes B∗ and,
consequently, reduces the computational time complexity of the expensive
structure match case in Eq. (17) by a quadratic factor; cf. (Will et al.,
2007). Also following LocARNA, one can achieve an analogous quadratic
improvement in space complexity. To this end, we arrange the computation
of matrix entriesM(x, y) to compute them in rounds of lexicographically
decreasing index vectors x ; each round computes the slice M(x, .). For
computing the slice, the algorithm requires (for efficiency, constant time)
access to two types of entries: matrix entries in the same slice and entries
M(z, y) from the structure case. We gain space by reusing the space for the
matrix sliceM(x, . ) in every round and storing only the entriesM(z, y),
which are required in the structure case of the recursion, permanently. The
space for the latter can be strongly limited by using a sparse data structure,
since we require them only for y, z ∈ B∗, where B∗ is sparse due to the
above argument on base pair candidates.

Thirdly, we sparsify the alignment space based on alignment
probabilities in a simple sequence alignment of the input sequences (Do
et al., 2008). Based on a partition function variant of sequence alignment,
this strategy computes the probability that a prefix alignment of a[1..i]

and b[1..j] is part of an alignment optimizing the sequence component of
the score. In our implementation, we compute only the entries of M that
pass some hard cutoff probability θ. In this way, using sufficiently small
cut-offs, the DP optimization still considers all relevant alignments under
the sequence-structure shift alignment score. Limiting the indices in the
sequence component based on this heuristic yields another improvement
of the time complexity by a linear factor.

Combining the above heuristics yields a Sankoff bi-alignment
algorithm that runs in O(n2) time and space. By restricting the
computations based on the constant δmax (first heuristic), it achieves
the same complexity as LocARNA. However, bi-alignment will require
significantly more space and time by a factor polynomial in δmax.
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