
Project Description

Type of Input Data

Our input will be structure-annotated sequence, i.e., in practice each input item
a is a pair of strings of the same length. The first string will be an amino-acid
sequence, the seccond string its secondary structure annotation. Figure 1 in
“Bi-Alignments with Affine Gaps Costs” shows and example

SeqA RAKLPLKEKKLTATANYHPGIRYIMTGYSAKYIYSSTYARFR

StrA CHHHHHHHHHHHHHCCCCTCEEEEEEECCTCEEEEEEEECCC

We will use a similarity measure on the aminoacid sequences (e.g. the BLO-
SUM matrix, see e.g. wiki page, plus a (user defined) gap penalty) and a sim-
ilarity measure of the secondary structure on the letters used in the secondary
structure annotration, again with a gap penalty.

For the affine gap cost version we will of course need as a gap open and a
gap extend parameter.

Finally, we need a single parameter to score the shift penalty, called ∆ in
the papers.

Suggestion. Read scoring models from a file in a simple format that can
be edited easily.

Aims:

1. Implement a simple, linear-cost, non-optimized version for shift align-
ments.

this is equ.(3) of “Bi-Alignments as Models of Incongruent Evolution ...”
(2nd paper). Note that the variables in the recursion are 4-dimensional
index vectors x and 4-dimensions (binary) patters.

Don’t waste time to optimize this, we only need it to check correctness.

As a sanity check we also compute the pairwise alignment of our input
objects (a) scored with only the sequence scoring function, (b) scored with
only the structure scoring function, and (c) with the sum of the sequence
and structure scores are scoring function. Note that algorithmically this
is three times the very same algorithm, just with different scoring models.
Of course the algorithm is the simple, linear-cost, Needlemann-Wunsch
algorithm for pairwise sequence alignments.

From these three pairwise alignments we can compute an upper bound on
the number of shifts that we can possibly have: This bound is explained
in “Incongruences Between Sequence and Secondary Structure Alignments
of Nucleic Acids” Theorem 2/equ.(18). Use this to crosscheck the bialign-
ment implementation!

Note: we need a backtracing only for the bi-alignment algorithm, for the
pairwise alignments it suffices to compute the scores to use equ.(18).

1

As an inspiration of for the output format you might want to use Fig.3
in “Bi-Alignments as Models of Incongruent Evolution ...”, of course re-
placing the RNA dot-bracket notation by the protein secondary structure
notation. The format is chosen such that the upper and lower blocks are
the alignments with the first and second scoring model, and the two blocks
are aligned according to the shifts. But feel free to experiment!

Note that the shifts can be directly read off the columns of the 4-way
alignment, e.g. equ.(2.2) in “Bi-Alignments with Affine Gaps Costs”. This
is true in general.

2. Next we implement the affine gap cost version explained in “Bi-Alignments
with Affine Gaps Costs”, more precisely equ.(2.6).

A few comments are in order:

1. make sure you understand the notation: x and y are the 2-dimensional
index that together form the index vector characterizing an alignment
column. x refers to alignment w.r.t. to the first scoring function, y
refers to the alignment w.r.t to the second scoring function. The p
and q are the corresponding part of the end gap pattern. Note that
they are also 2-D vectors.

2. again we will need the three types of pairwise alignments (for each of
the individual scoring models, and for the sum), only this time the
alignments need to be computed with Gotoh’s algorithm for affine
gap costs.

3. Finally we want to optimize this code by avoiding the computation of the
4D dynamic programming matrix M . We known that in each alignment
column the difference |x1 − y1| + |x2 − y2| of the indices, i.e., the total
“visible” shift at this column, cannot be larger than the maximal number
of possible shits, for which we can compute an upper bound for given input
data according to Theorem 2/equ.(18). The goal is therefore to restrict
the memory requirements and the CPU requirements by only computing
those entries in M that can be optimal, i.e., that have no more shifts than
the pre-computed bound.

4. Optional! In principle one can get an even better bound by noticing that
Theorem 2/equ.(18) also holds for the alignments of prefixes, i.e., for each
index pair (i, j) in the DP matrices of the three pairwise alignments. This
may then yield even better bounds. It is unclear whether this worth the
effort or not.

5. Once we have a working version of point 3.:

1. Test and benchmark for resource consumption. How does the perfor-
mance depend on sequence and structure similarity?

2

2. Extract a text of Pfam protein families and from those say the coor-
responding E. coli and Xanthomonas representative, compute their
predicted secondary structures using web resources or downloadable
tools (see webpage). Do we find evidence for incongruent evolution?
This step will also need a bit of playing with the shift score ∆. Note
that Theorem 2/equ.(18) will rule out shifts already without com-
puting the bialignment itself. (how?) Obviously then there is not
point in computing the bialignment.

If we can expect shifts, compute the the corresponding bi-alignments.

3

