
Compositional Properties of Alignments

Sarah J. Berkemer, Christian Höner zu Siederdissen and Peter F.
Stadler

Abstract. Alignments, i.e., position-wise comparisons of two or more strings
or ordered lists are of utmost practical importance in computational biology
and a host of other fields, including historical linguistics and emerging areas of
research in the Digital Humanities. The problem is well-known to be compu-
tationally hard as soon as the number of input strings is not bounded. Due to
its practical importance, a huge number of heuristics have been devised, which
have proved very successful in a wide range of applications. Alignments never-
theless have received hardly any attention as formal, mathematical structures.
Here, we focus on the compositional aspects of alignments, which underlie
most algorithmic approaches to computing alignments. We also show that
the concepts naturally generalize to finite partially ordered sets and partial
maps between them that in some sense preserve the partial orders. As a con-
sequence of this discussion we observe that alignments of even more general
structure, in particular graphs, are essentially characterized by the fact that
the restriction of alignment to a row must coincide the the corresponding input
graphs. Pairwise alignments of graphs are therefore determined completely by
common induced subgraphs. In this setting alignments of alignments are well-
defined, and alignments can be decomposed recursively into subalignments.
This provides a general framework within which different classes of alignment
algorithms can be explored for objects very different from sequences and other
totally ordered data structures.

1. Introduction

Alignments play an important role in particular in bioinformatics as a means of
comparing two or more strings by explicitly identifying correspondences between
letters (usually called matches and mismatches) as well as insertions and deletions
[13]. The aligned positions are interpreted either as deriving from a common an-
cestor (“homologous”) or to be functionally equivalent. Alignments have also been
explored as means of comparing words in natural languages, see e.g. [36, 10, 56, 6],

2 Sarah J. Berkemer, Christian Höner zu Siederdissen and Peter F. Stadler

as a convenient way of comparing ranked lists [19], for comparison of text editions
[63, 58], and to analyse synteny in the comparison of genomes [24, 60].

Alignment problems are usually phrased as optimization problems. Most com-
monly a scoring model is defined for pairs of sequences and generalized to multiple
alignments as sums over certain pairwise alignments that are obtained as projec-
tions. The pairwise scoring is usually specified either in terms of matches or in
terms of edit operations (insertions, deletions, or substitutions). In this contribu-
tion, however, we will almost completely disregard the scoring of alignments and
instead focus on the structure of (multiple) alignments as combinatorial objects.
Our aim here is not to construct concrete alignment algorithms but the systematic
generalization of alignments from string to more general discrete objects.

Alignments are usually constructed from strings or other totally ordered in-
puts, hence the columns of the resulting alignment are usually also treated as a
totally ordered set. Consecutive insertions and deletions, however, are not natu-
rally ordered relative to each other:

gugugu--acgggcca guguguac--gggcca
gucuguug--gggccc gucugu--uggggccc (1)

are alignments that are equivalent under most plausible scoring models. The idea
to consider alignment columns as partial orders was explored systematically in [40]
and a series of follow-up publications [39, 25]. Here, (mis)matches are considered
as an ordered backbone, with no direct ordering constraints between an insertion
and a deletion. The resulting alignments are then represented as directed acyclic
graphs (DAGs), more precisely, as the Hasse diagrams of the partial order. The
key idea behind the POA software [40] is that a sequence of DAGs can be used as
an input to a modified version of the Needleman-Wunsch algorithm [48]. Recently
this idea has been generalized to the problem of aligning a sequence to a general
directed graph [51, 59].

Despite the immense practical importance of alignments, they have received
very little attention as mathematical structures in the past. The most compre-
hensive treatment, at least to our knowledge, is the Technical Report [47], which
considers (pairwise) alignments as binary relations between sequence positions that
represent matchings and preserve order. Here, we will make use of many of these
ideas and show how they can be extended to a notion of alignments on partially
ordered sets. We shall see that such a generalization still supports the recursive
construction that underlies the exact dynamic programming algorithms employed
to compute score-optimal alignments in the totally ordered case. Following our
earlier work [50], we will use a language that is closer to graph theory than the
presentation of [47, 46].

The notion of a composition of pairwise alignments – formalized as compo-
sition of partial maps that represent the matching – first appears in [42], see also
Section 5. In the next two sections, we first review the sequence alignment problem
and introduce a formal framework that separates the structure of multiple align-
ments from their scoring. In the following sections, we explore the consequence of

Compositional Properties of Alignments 3

relaxing some of the axioms to cover partial orders in general. Then we explore
the compositional properties. Our main concerns are to ensure that alignments of
alignments are well-defined as a foundation for progressive alignment procedures,
and that decompositions into blocks exist that can form the basis of divide-and-
conquer approaches to aligning partially ordered sets. Following a brief discus-
sion of the view of alignments are compositions of pairwise matching relations,
we further generalize the formalism to include first ordered trees, then directed
and undirected graphs, and finally essentially arbitrary finite spaces that admit
well-behaved subspace constructions. We shall conclude that alignments are alter-
natively specified in terms by common induced subgraphs (or the corresponding
common induced subspaces in full generality).

2. A Very Brief Review of Sequence Alignments

The literature on alignments is extensive. However, it its concerned almost exclu-
sively with practical algorithms and applications. The alignment problem for two
input strings has an elegant recursive solution for rather general cost models and
has served as one of the early paradigmatic examples of dynamic programming
[48, 54]. Since these algorithms have only quadratic space and time requirements
for simple cost models [48, 22], they are of key importance in practical applica-
tions. The same recursive structure easily generalizes to alignments of more than
two sequences [9, 41] even though the cost models need to be more restrictive to
guarantee polynomial-time algorithms [34]. The computational effort for these ex-
act solutions to the alignment problem increases exponentially with the number of
sequences, hence only implementations for 3-way [23, 35, 37] and 4-way alignments
[56] have gained practical importance. A wide variety of multiple sequence align-
ment problems (for arbitrary numbers of input sequences) have been shown to be
NP-hard [33, 61, 7, 31, 17] and MAX SNP-hard [62, 43]. The construction of prac-
tical multiple alignment algorithms therefore relies on heuristic approximations.
These fall into several classes, see e.g. [14, 3] for reviews.
(1) Progressive methods typically compute all pairwise alignments and then use
a “guide tree” to determine the order in which these are stepwisely combined into
a multiple alignment of all input sequences. The classical example is ClustalW
[38]. The approach can be extended to starting from exact 3-way [35, 37] or 4-way
alignments [56].
(2) Iterative methods starting to align small gapless subsequences and then extend
and improve the alignment iteratively until the score converges. The iterative ap-
proach often used as a refinement step in combination with different other basics
methods.
(3) Consistency-based alignments and consensus methods start from a collection of
partial alignments (often exact pairwise alignments) to obtain candidate matches
and extract a multiple alignment using agreements between the input alignments.

4 Sarah J. Berkemer, Christian Höner zu Siederdissen and Peter F. Stadler

(a) (b) (c) (d)
A 0000111110000 A 0000111110000 B 000011011---- B 000011011
B 000011011---- C ----100010000 C ----100010000 C 100010000

s = 4 s = 2 s = -5 s = 5

Figure 1. Alignments of three binary sequences A, B, and C
with a simple scoring model considering additive contributions
of columns. In this example, we use a score of +1 for matches,
0 for mismatches, and −1 for gaps. Alignment (c) is transitively
implied by (a) and (b), but is it not an optimal pairwise alignment
of B and C.

A paradigmatic example for the combination of consistency-based alignments and
the iterative approach is DIALIGN [45] using additionally local motifs as anchors.

Most of the successful multiple alignment algorithms in computational biol-
ogy combine these paradigms. For example T-COFFEE [49] and ProbCons [11] use
consistency ideas in combination with progressive constructions; MUSCLE [15] and
MAFFT [32] combine progressive alignments with iterative refinements.

A key assumption underlying consistency based methods is transitivity: con-
sidering three input sequences x, y, and z, if xi aligns with yj and yj aligns with
zk, then xi should also align with zk. While this property holds for the pairwise
constituents of a multiple alignment, it is a well known fact that the three score-
optimal alignments that can be constructed from three sequences in general violate
transitivity, see Fig. 1. TRANSALIGN [42] uses transitivity to align input sequences
to a target database using an intermediary database of sequences to increase the
search space. Here, intermediary sequences show which subsequences of input and
target sequence can be transitively aligned. This may result in a few well aligned
subsequences that are then extended to one aligned region via a simple scoring
function. The same notion of transitivity is also used in psiblast [2] to stepwisely
increase the set of sequences that are faintly similar to an input sequence.

Practical applications distinguish whether the complete input sequences are
to be aligned, or whether a maximally scoring interval is to be considered. In the
latter case one allows an additional “unaligned state” for prefixes and/or suffixes
of the input. This leads to slight changes in exact algorithms, exemplified by an
extra term in the local Smith-Waterman algorithm [55] compared to the global
Needleman-Wunsch [48] algorithm. This idea can be generalized to mixed problems
in which a user can determine for each of the two ends of each input sequence
whether it is to be treated as local or global [53].

3. Formal Definitions of Sequence Alignments
Suppose we are given a set S of |S| ≥ 1 sequences with not necessarily equal length.
For s ∈ S we write si for the i-th position in s, and |s| denotes the length of s, i.e.,
the number of positions. The most common representation of an alignment is as a

Compositional Properties of Alignments 5

rectangular matrix whose rows are indexed by the sequences and whose columns
are index by integers i ∈ [1, L], where L is the number of alignment columns.
Each sequence is then associated with a strictly monotonically increasing function
αs : [1, |s|]→ [1, L] such that for each i ∈ [1, |s|], αs(i) is the index of the column
containing si. The alignment matrix contains a gap symbol in row s and column
k whenever α−1s (k) = ∅, otherwise, the matrix element is sα−1

s (k). Consider the
following simple example:

a 0000111110000
b 000011011----
c ----100010000

(2)

We have αA(i) = i for 1 ≤ i ≤ 13, αB(i) = i for 1 ≤ i ≤ 9, and αC(i) = i + 4 for
1 ≤ i ≤ 9. For the 10th column of the example we have α−1a (10) = 10, α−1b (10) = ∅,
α−1c (10) = 6; hence the entries in the 10th column are aα−1

a (10) = a10 = 0, −
because α−1b (10) = ∅, and cα−1

c (10) = c6 = 0. It will be convenient in the discussion
below to also consider single sequences as (trivial) alignments, using the identity
on [1, |s|].

The actual values of the sequence elements, i.e., the si are of course important
to determine the scoring. For our purposes, however, they are irrelevant, since we
will only be interested in the structure of the alignments. It therefore suffices to
consider the sequence positions Xs := [1, |s|] for each input sequence and their
arrangement in the alignment columns. This information is completely contained
in the functions αs. We can therefore “forget” about almost all the details about
the sequence s except its length, which by construction satisfied |Xs| = |s|. From
here on, we can therefore treat s simply as an index used solely to enumerate
the elements of S. We will use the symbol • to indicate that a particular cell in
the alignment matrix is occupied, while − indicates gaps. The • eventually will
become vertices in a graph representation.

For our purposes the set of sequence positions Xs is simple a finite ordered
set. To emphasize this fact, and to make generalizations below more transparent,
we write (Xs, <s) to explicitly expose the order relation on Xs. For a given set
of sequences, furthermore, we will need the set of all sequence positions defined
as the disjoint union X :=

⋃
· s∈S Xs of all sequence positions. The structure of an

alignment with L columns is completely determined by the function ω : [1, L] →∏
s∈S(Xs ∪· {−}) such that ω(k) = (ωs(k)|s ∈ S), ωs(k) = − iff α−1s (k) = ∅ and

ωs(k) = j ∈ Xs iff αs(j) = k. Thus ω plays the role of a (slightly modified) inverse
of α: If α−1s (k) 6= ∅, then ωs(k) = α−1s (k), while ωs(k) = − if α−1s (k) = ∅. It is
customary, furthermore, to exclude alignment columns that consist entirely of gap
symbols.

Definition 1. An alignment on X =
⋃
· s∈S Xs defined by ω is proper if there is no

k such that ωs(k) = − for all s ∈ S.

Given ω, we construct a graph with vertex set X =
⋃
· s∈S Xs and edge set

A such that xy ∈ A if there is k ∈ [1, L] and distinct sequences s and t such that
ωs(k) = x and ωt(k) = y. In other words, positions x and y are joined by an edge

6 Sarah J. Berkemer, Christian Höner zu Siederdissen and Peter F. Stadler

if and only if x and y appear in the same column of the alignment. We call this
graph the alignment graph.

Lemma 2. Consider an alignment on X :=
⋃
· s∈S Xs determined by ω. Suppose

x ∈ Xr, y ∈ Xs, and z ∈ Xt and both xy and xz are edges in the alignment graph.
Then
(i) r, s, and t are pairwise distinct.
(ii) yz is also an edge in the alignment graph.

Proof. Property (i) following immediately from the requirement that αs is strictly
monotonically increasing, i.e., any two positions of the same sequence are mapped
to distinct alignment columns. Property (ii) follows directly from the definition. If
xy and xz are edges, then x, y, and z are located in the same alignment column
and thus yz is an edge of the alignment graph. �

The alignment graph therefore is the disjoint union of complete graphs such
that every connected component (which is a clique) contains at most one element
of each of the input sequences Xs. Every clique thus corresponds to an alignment
column. We write C(X,A) for the set of alignment columns, which for convenience
we identify with their vertex sets. More precisely, Q ∈ C(X,A) is an alignment
column if and only if there is k ∈ [1, L] such that x ∈ Q if and only if x = ωs(k) 6= −
for some s ∈ S. In particular, for each s ∈ S we have either Q ∩ Xs = ∅ or
Q ∩Xs = {ωs(k)}.

The alignment graph is consistent with the input orders <s on Xs, s ∈ S in
the following sense:

Lemma 3. Let Q′ and Q′′ be two distinct connected components of the alignment
graph with vertex set X determined by ω and suppose there is s, t ∈ S such that
xs ∈ Q′ ∩Xs, ys ∈ Q′′ ∩Xs, xt ∈ Q′ ∩Xt, and yt ∈ Q′′ ∩Xt. Then xs <s ys if
and only if xt <t yt.

Proof. By Lemma 2, two vertices xs and xt are in the same connected componentQ
if and only if they are in the same column, i.e., if α(xs) = α(xt) =: k′. Analogously,
α(ys) = α(yt) =: k′′. By monotonicity of αs and αt, we therefore have xs <s ys if
and only if k′ < k′′, which in turn is true if and only if xt <t yt. �

In particular, we may conclude:

Observation 1. Consider an alignment on X determined by ω. Then there exists
an order on the alignment columns such that Q′ <A Q′′ implies x <s y whenever
x ∈ Q′ ∩Xs and y ∈ Q′′ ∩Xs.

Proof. The by construction, the alignment columns are ordered. Lemma 3 implies
that this order is consistent with the order <s of each Xs. �

In the following it will be convenient to write each element of X as a pair
that explicitly specifies the input sequence from which it derives. That is, we write
(a, i) ∈ X for i ∈ Xa and a ∈ S.

Compositional Properties of Alignments 7

The simple observations of this section suggest to define an alignment by
means of an alignment graph with a suitable order of the columns. The following
definition rephrases the approach taken e.g. in [57, 47, 46] in a form that will be
most convenient for further generalizations:

Definition 4 (Total Alignment [50]). A total alignment of a finite collection of finite
totally ordered sets (Xs, <s), s ∈ S, is a triple (X,A,<) where X :=

⋃
· s∈S Xs,

(X,A) is an undirected, loop-free graph with vertex set X with C(X,A) being the
set of its connected components, and < is a total order relation on C(X,A) such
that the following conditions are satisfied.1

(1) Q ∈ C(X,A) is a complete subgraph of (X,A).
(2) If (a, i) ∈ Q and (a, j) ∈ Q then i = j.
(4) If (a, i), (b, j) ∈ P and (a, k), (b, l) ∈ Q with i <a k then j <b l.
(5) If (a, i) ∈ P , (a, j) ∈ Q and (a, i) <a (a, j) then P < Q.

As above, the connected components of the alignment graph (X,A) play the
role of the alignment columns. Condition (2) ensures that every alignment column
contains at most one element of each ordered set Xa. Conversely, every element
(a, i) is contained in exactly one connected component, i.e., alignment column.
Condition (4) requires that alignment columns do not cross. Condition (5) ensures
that the restriction of order on the columns to each row recovers the order (Xa, <a).
A bit more formally, we may phrase this as follows:

Observation 2. Let (X,A,<) be an alignment, P,Q ∈ C(X,A), P ∩Xa = {(a, i)},
and Q ∩Xa = {(a, j)}. Then P < Q if and only if (a, i) <a (a, j).

A well known observation in the theory of alignments is that Conditions (4)
and (5) in general only specify a partial order but not a total order of the alignment
columns:

Lemma 5. Let (X,A) be an alignment graph and denote by ≺ the relation defined
for all P,Q ∈ C(X,A) by P ≺̇Q whenever there is an a ∈ S such that (a, i) ∈ P ,
(a, j) ∈ Q and i < j. Then the transitive closure ≺ of ≺̇ is a partial order on
C(X,A).

Proof. By construction, ≺̇ is antisymmetric. By definition P ≺ Q if and only if
there is a sequence of columns P = Q0≺̇Q1≺̇ . . . ≺̇Qk = Q. Since the sequence
of elements (a, i) belonging to the same Xa is strictly increasing with the column
index j for each a along any such sequence of columns, it follows that the transitive
closure of ≺ is still antisymmetric. Thus ≺ is a partial order. �

As an immediate consequence, there is also a (not necessarily unique) total
order < of the alignment columns, obtained as an arbitrary linear extension of ≺,
which by construction satisfies

P < Q, (a, i) ∈ P, and (a, j) ∈ Q implies i < j. (3)

1There is no condition (3) due to synchronization with the definitions for partial orders defined
later.

8 Sarah J. Berkemer, Christian Höner zu Siederdissen and Peter F. Stadler

We summarize this reasoning in

Theorem 6. Let (X,A) be an alignment graph for X =
⋃
· s∈S Xs and conditions

(1), (2), and (4) of Definition 4 are satisfied. Then there exists a total order < on
C(X,A) satisfying condition (5), i.e., such that (X,A,<) is a total alignment.

Theorem 6 provides the justification for considering alignment graphs with
ordered columns instead of the matrix representation defined by ω. Obviously
(X,A,<), or more precisely the order < of the alignment columns completely
defines α, ω, and L provided we require that there are no alignment columns
consisting entirely of gap symbols.

Before we proceed, a few remarks are in order: In this setting the actual
data associated with the sequence element (a, i), whether it is simply the i-th
letter of input sequence a or an extensive entry at position i of the list a, is
treated as a label that influences only the scoring but not the structure of the
alignment. This separation between the underlying (index) structure and the data
associated with them is also used in algebraic dynamic programming approaches
to alignments [29, 5], where the structure of the recursions depends only on the
possible alignments (X,A,<) for a given set X, while the scoring depends on
the labeling of X. In order to treat (partially) local alignments it is necessary to
distinguish aligned and “unaligned” columns. Each unaligned column may contain
only a single element, i.e., every unaligned position is considered as an insertion
relative to all other elements of X. Whether a position is aligned or unaligned
affects only the scoring, hence at the level of alignment graphs we do not need to
concern ourselves with a distinction of local, partially local, and global alignments.

4. Alignments of Partially Ordered Sets

Since the alignment of totally ordered sets in general only specifies a partial order
of columns but not a total order, it seems natural to ask whether the concept of
alignments and alignment graphs can be extended to partial orders instead of total
orders and inputs. From here, one therefore considers a collection of finite partial
orders (Xa,≺a), a ∈ S, |S| ≥ 1. As a generalization of Def. 4 we consider

Definition 7 (PO Alignment). A partial order (PO) alignment of X is a triple
(X,A,≺) where (X,A) is a graph and ≺ is a partial order on the set of connected
components C(X,A) such that

(A1) Q ∈ C(X,A) is a complete subgraph of (X,A).
(A2) If (a, i) ∈ Q and (a, j) ∈ Q, then i = j.
(A3) If (a, i) ∈ P , (a, j) ∈ Q for some P,Q ∈ C(X,A) and (a, i) ≺a (a, j) then

P ≺ Q.
(A4) P ≺ Q, (a, i) ∈ P and (a, j) ∈ Q implies (a, i) ≺a (a, j) or (a, i) and (a, j)

are incomparable w.r.t. ≺a.

Compositional Properties of Alignments 9

1 2 3 4

a

b

Figure 2. Property (A4∗) is not sufficient to ensure the exis-
tence of a partial order ≺ on C(X,A). Consider the partial or-
ders (a, 4) ≺a (a, 1) and (a, 2) ≺a (a, 3) and (b, 1) ≺b (b, 2)
and (b, 3) ≺a (b, 4), with alignment columns {(a, i), (b, i)} for
i = 1, 2, 3, 4. Clearly (A2), (A3), and (A4∗) holds, but the di-
rected cycle shows that no partial order on the columns exists
that is consistent with both partial orders.

Condition (A3) constrains the partial order on the columns to respect the
partial order of the rows. Condition (A4) insists that columns also must not cross
indirectly.

If all (Xa,≺a) are totally ordered then condition (A4) implies the non-
crossing condition (4) because (b, j) and (b, l) cannot be incomparable w.r.t. ≺b,
and thus the required partial order ≺ is obtained as the transitive closure of the
relative order of any two columns. Definitions 4 and 7 therefore coincide for totally
ordered rows.

Condition (A4) obviously implies the following generalization of (4):
(A4∗) (a, i), (b, j) ∈ P and (a, k), (b, l) ∈ Q and (a, i) ≺a (a, k) implies (b, j) ≺b (b, l)

or (b, j) and (b, l) are incomparable w.r.t. ≺b ∀P,Q ∈ C(X,A).
However, (A4∗) is not sufficient to guarantee that the alignment columns form a
partially ordered set. A counterexample is shown in Fig. 2. It is therefore necessary
to require the existence of the partial order ≺ on the alignment columns C(X,A)
as an extra condition in Definition 7.

The existence of (non-trivial) alignments of any collection of finite partial
orders (Xs,≺s), s ∈ S, is easy to see: each of the partial orders can be linearly
extended to a total order (Xs, <s). Any alignment of these total orders is also
an alignment of the underlying partial orders, with a suitable partial order of the
columns given by Lemma 5.

Before we proceed we briefly remark that at the level of our discussion we do
not need to concern ourselves with the distinction of global and local alignments.
In order to model a partially local alignment of posets we consider the set A
of aligned columns and a partition of the set of “unaligned columns” into two not
necessarily non-empty subsets P and S such that for all U ∈ P, V ∈ A andW ∈ S
it holds that W 6� V and V 6� U , i.e., no “unaligned” suffix column precedes an
aligned column, and no “unaligned” prefix column succeeds an aligned column.
“Unaligned” prefix columns belonging to different rows (Xa,≺a) are considered

10 Sarah J. Berkemer, Christian Höner zu Siederdissen and Peter F. Stadler

mutually incomparable; the same is assumed for “unaligned” suffix columns. With
the caveat that “unaligned” columns need to be marked as such, there is again no
structural difference between local and global alignments.

The projection of (X,A,≺) onto a row a ∈ S is obtained as the set πa(X) :=
{(a, i) ∈ Xa|∃Q ∈ C(X,A) : (a, i) ∈ Q} endowed with the partial order ≺πa such
that (a, i) ≺πa (a, j) whenever there are columns P,Q ∈ C(X,A) with P ≺ Q. A
potential shortcoming of Def. 7 is that is does not guarantee that (πa(X),≺πa) =
(Xa,≺a). It is therefore of interested to to consider a (much) stronger version of
axiom (A4):

(A5) P ≺ Q, (a, i) ∈ P and (a, j) ∈ Q implies (a, i) ≺a (a, j); ∀P,Q ∈ C(X,A).

First we note that (A5) implies (A4). The definition of the projection of (X,A,≺)
to a row a ∈ S then immediately implies

Observation 3. Suppose a (X,A,≺) satisfies (A1), (A2). Then (A5) is equivalent
to (πa(X),≺πa) = (Xa,≺a).

Observation 2 furthermore implies that (A4) and (A5) are equivalent if all
(Xa,≺a) are totally ordered. In general this is not the case, however, as the example
in Fig. 3 shows.

The following simple, technical result is a generalization of Lemma 5, showing
that condition (A5) is sufficient to guarantee the existence of a partial order on
the columns.

Lemma 8. Let (X,A) be a graph with connected components C(X,A) satisfying
(A1) and (A2). Let ≺̇ denote the transitive closure of the relation ≺ defined by
(A3), i.e., P ≺̇Q whenever (a, i) ∈ P , (a, j) ∈ Q and (a, i) ≺a (a, j) then P ≺
Q; ∀P,Q ∈ C(X,A). Finally assume that axiom (A5) holds. Then ≺ is a partial
order on C(X,A)

Proof. It suffices to show that ≺̇ is antisymmetric. It is clear from the construction
that by (A5) we know that ≺ is antisymmetric. If ≺̇ is not antisymmetric, then
there is a finite sequence of columns Pi, i = 0, . . . , k such that P0≺̇P1≺̇ . . . ≺̇Pk≺̇P0

such that any two consecutive columns Pi and Pi+1 have at a pair of entries, say
(ai, h) ∈ Pi and (ai, h

′) ∈ Pi+1, in the same row. For the transitive closure this
would imply both (ai, h) ≺ (ai, h

′) from (ai, h)≺̇(ai, h
′) and (ai, h

′) ≺ (ai, h) by
going around the cycle, contradicting axiom (A5). �

Finite partial orders (Xa,≺a) are equivalent to finite directed transitive
acyclic graphs. The projection property of Observation 3, can be expressed in
graph-theoretical terms in the following manner:

Observation 4. Let (X,A,≺) be an alignment of partial orders (Xa,≺a), S′ ⊆ S
a subset of columns, and Q′ ⊆ C(X,A) such that Xa ∩ Q 6= ∅ for all a ∈ S′ and
Q ∈ Q′. Then the graph with vertex set Q′ and directed edges whenever P ≺ Q is
an induced subgraph of (the graph representation of) (Xa,≺a).

Compositional Properties of Alignments 11

Figure 3. Top: Pairwise alignments of partially ordered sets.
Thin black edges show the Hasse diagram, to be read from left to
right. Alignment edges are shown in green.
Bottom: The induced partial order of the alignment columns with
corresponding points vertically aligned. The partial order is again
shown as a Hasse diagram, with superfluous edges omitted. Both
the l.h.s. and the r.h.s. example satisfy (A4), i.e., none of order
relations ≺1 and ≺2 is violated in the alignment. The red edges
highlight two comparabilities introduced by partial order of the
columns that are absent in the input posets. Red edges therefore
imply a violation of condition (A5). Hence the l.h.s. alignment
violates (A5), while the r.h.s. alignment does not.

Thus the set of alignment columns Q′ defines an induced common subgraph
of the transitive acyclic graphs (Xa,≺a) in a ∈ S′. This is of course also true for
pairwise alignments. In the pairwise case, none of the columns Q ∈ C(X,A) \ Q′
describe a (mis)match, i.e. they contain only insertions and deletions, while all
Q ∈ Q′ describe (mis)matches. A score-optimal alignment of two partial orders
therefore corresponds to a maximal induced common subgraph of two transitive
acyclic graphs. In both specifications of the problem, the scoring function will of
course depend on the labels. We refer to [8] for a discussion of the relationships
of edit distances and maximum common subgraph problems in a more general
setting.

5. Composition of Alignments

In order to study the composition of alignments it seems natural to first consider
the properties of parts of given alignments. The most natural starting point is to
consider restrictions induced by considering subsets of the input sequences. The

12 Sarah J. Berkemer, Christian Höner zu Siederdissen and Peter F. Stadler

following result, which generalizes Lemma 1 of [50], provides a convenient starting
point.

Lemma 9. Let (X,A,≺) be an alignment and let Y ⊆ X. Then the induced subgraph
(X,A)[Y] with the partial order ≺ restricted to the non-empty intersections Q∩Y
∀Q ∈ C(X,A) is again an alignment. Furthermore, if (X,A,≺) satisfies (A5), then
the restriction to (X,A)[Y] again satisfies (A5).

Proof. Every induced subgraph of a complete graph is again a complete graph,
hence (A1) holds for (X,A)[Y], hence the connected components of (X,A)[Y]
are exactly the non-empty intersections of Y with the components Q of (X,A).
Condition (A2) remains unchanged by the restriction to Y . Finally, the partial
order ≺ satisfying (A3) restricted to the non-empty intersections Q ∩ Y for Q ∈
C(X,A) is a partial order that obviously still satisfies (A4) since the restriction to
Y only removes some of the conditions in (A4).

To see that the restriction of (X,A)[Y] again satisfies (A5) it suffices to recall
that the partial order in the column is given by P ∩ Y ≺ Q ∩ Y whenever P ≺ Q
and both P ∩ Y 6= ∅ and Q ∩ Y 6= ∅. If one of the intersections is empty, axiom
(A5) becomes void since the empty set is not a column in (X,A)[Y]. On the other
hand, if the two restricted columns have entries (a, i) and (a, j) in the same row,
then (A5) for (X,A,≺) ensures (a, i) ≺a (a, j), i.e., the implication (A5) remains
true for the restricted alignment. �

Note that additional partial orders on connected components of the induced
subgraph (X,A)[Y] may exist that are not obtained as restrictions of the partial
order on C(X,A). The reason is that omitting parts of the columns may allow a
relaxation of their mutual ordering.

Rooted trees can be seen as partially ordered sets, with the natural partial
order defined by x ≺ y if y lies on the unique path connecting x and the root
of the tree. This special case is thus covered in the general framework outlined
here. Usually, tree alignments are defined on rooted oriented trees, however, where
the relative order of siblings is preserved [30, 26, 5], thus imposing additional
restrictions on valid alignments. We will return to this point in some generality in
the discussion section.

The fact that alignments are again totally or partially ordered sets implies
that one can also meaningfully define alignments of alignments. As before, we start
from a collection of finite partial orders (Xa,≺a), a ∈ S. Let P be a non-trivial
partition of the rows, i.e., of S, whose classes we will write as Sα indexed by α.
We write Xα :=

⋃
· a∈Sα Xa. By construction, Xα ∩Xβ = 0 for α 6= β, i.e., the site

sets of the row classes are disjoint. The row partition P thus implies a partition
of X.

Lemma 10. Let (X,A,≺) be an alignment of the (Xa,≺a), a ∈ S, P be a non-trivial
partition of S, Xα :=

⋃
· a∈Sα Xa the site set of the row calls α and (X,A,≺)[Xα]

the corresponding sub-alignment of (X,A,≺). Then (X,A,≺) is isomorphic to the
(vertex) disjoint union of the (X,A,≺)[Xα] for all row classes α, augmented by

Compositional Properties of Alignments 13

- ---
 - -
 --
-- - -

Seq a
Seq b
Seq c
Seq d

Q
a b

c

- --
 -

 -
-- -

Seq a
Seq b

Seq c
Seq d Q

a b

c

Q - --
 -

 -
-- -

-

-

Figure 4. Example of an alignment (left) being composed out
of sub-alignments (middle) corresponding to the partition of
the rows in the two classes Sα = {a, b} and Sβ = {c, d}.
Columns marked by dashed lines show how the creation of sub-
alignments removes gap columns. Column Q ∈ C(X,A) (marked
in grey) is highlighted as an example. On the right, the two sub-
alignments with the corresponding restrictions of Q are shown:
Qα ∈ C(X,A)[Xα] and Qβ ∈ C(X,A)[Xβ] are connected compo-
nents and complete subgraphs of the sub-alignment graphs and
can be composed to Q by applying the disjoint union and adding
extra edges between all elements in Q that are in distinct sub-
alignments thus Qα and Qβ (dashed lines). Indices at nodes in
the graph refer to the sequence the node is coming from. The
alignment (X,A)/P on the right is the alignment of the sub-
alignments (Xα, A) and (Xβ , A). Thus the nodes in the align-
ment graph are columns of the sub-alignments. Alignment edges
show matched columns. The unmatched columns correspond to
the columns marked by dashed lines in the alignments on the left
and middle.

extra edges (x′, x′′) whenever there is a column Q ∈ C(X,A) with x′ ∈ Q∩Xα and
x′′ ∈ Q ∩Xβ for classes α 6= β.

Proof. By Lemma 9, the alignments (X,A,≺)[Xα] subalignments of (X,A,≺) and
thus (X,A)[Xα] is an induced subgraph of (X,A). Their disjoint union therefore
lacks exactly all edges that connect pairs of vertices that are in the same connected
component of (X,A) but do not below to the same class of rows α. Since the
partial order on the columns of (X,A)[Xi] is the one inherited from (X,A,≺), the
re-composition of the columns also recovers the original partial order. �

A corresponding example is shown in Fig. 4 where the alignment (X,A,≺)
is composed out of sub-alignments (X,A,≺)[Xα] and (X,A,≺)[Xβ] with Q, Qα,
and Qβ as examples for connected components of the alignment graphs and their
composition by disjoint union and extra edges (dashed lines) between elements of
distinct sub-alignments.

14 Sarah J. Berkemer, Christian Höner zu Siederdissen and Peter F. Stadler

The (X,A,≺)[Xα] can also be interpreted as partially ordered sets whose
points are the non-empty restrictions Q ∩ Xα of the connected components of
(X,A) to the row classes α.

Definition 11. We denote by (X,A)/P the quotient graph whose vertices are the
columns of the induced sub-graphs (X,A)[Xα], that is, the non-empty sets Q ∩Xi

where Q is a connected component of (X,A). Its edges are the pairs (Q∩Xα, Q∩
Xβ) for which both Q ∩Xα and Q ∩Xα are non-empty.

The connected components of the graph (X,A)/P are therefore of the form
Q′ := Q/P = {Q∩Xα|Q∩Xα 6= ∅}. Note that Q′ is non-empty since the column
Q of (X,A) contains at least one element, which belongs to (X,A)[Xα] for at
least one of the classes α of P. Thus there is a 1-1 correspondence between the
connected components of (X,A) and those of (X,A)/P. The columns of (X,A)/P
therefore naturally inherit the partial order ≺ of C(X,A). We write (X,A,≺)/P
for the quotient graph with this partial order on its connected components.

Lemma 12. (X,A,≺)/P is an alignment.

Proof. Consider the quotient graph (X,A)/P. By construction, each column Q′ is
a complete graph and contains at most one node for each class of P since it is the
quotient of a column of (X,A,≺) w.r.t. P. Also by construction, we have P ′ ≺ Q′
for the columns of (X,A)/P whenever P ≺ Q in (X,A,≺). Since there is a 1-1
correspondence between columns of (X,A,≺) and (X,A,≺)/P, ≺ also serves as
a partial order on the columns of (X,A)/P, which is by construction consistent
with the partial order on (X,A)[Xα] for each of the row classes α. �

Theorem 13. Let (X,A,≺) be an alignment and let P be an arbitrary row parti-
tion. Then (X,A,≺) is isomorphic to the alignment (X,A,≺)/P of its restrictions
(X,A,≺)[Xα] to the row classes α of P.

Proof. Since (X,A,≺)/P is well defined by Lemma 12, Lemma 10 shows that
expanding the classes points of (X,A,≺)/P into corresponding sets Qα building
the union of those the belong the a column of (X,A,≺)/P exactly recovers the
columns of (X,A,≺) and their partial order. �

We note that the constituent alignments (Xα, Aα,≺α) := (X,A,≺)[Xα] have
at most the same number of columns since “all gap” columns, Q′ = Q ∩ Xi = ∅,
are removed. The decomposition of Theorem 13 can be applied recursively until
each constituent alignment is one of the input posets (Xa,≺a), a ∈ S. Any such
recursive composition is naturally represented as a rooted tree T. The leaves of T
are the input posets (Xa,≺a), while the root represents (X,A,≺). Each internal
node of T corresponds the an alignment of its children. In particular, one can
choose T to be any binary tree.

The reverse of this type of decomposition underlies all progressive alignment
schemes. One starts from a guide tree T whose leaves are the (Xa,≺a) and for each
inner node of T constructs an alignment (or a set of alternative alignments) from

Compositional Properties of Alignments 15

the (set of) alignments attached to its children. It is important to note that a score-
optimal alignment (X,A,≺) in general is not the score-optimal alignment (X,A,≺
)/P of score-optimal constituents (Xα, Aα,≺α), or, in other words, if (X,A,≺) is
score-optimal, there is no guarantee that there is any nontrivial partition of the
rowsP such that all the restrictions (X,A,≺)[Xi] are score-optimal subalignments.
Progressive alignment methods thus cannot guarantee an exact solution of the
multiple alignment problem. Results in practical applications depend substantially
on the choice of the guide tree T. It is has been suggested early [20], that T
should closely resemble the evolutionary history of the input sequences. Usually
T is constructed from distance or similarity measures between all pairs of input
sequences – and usually pairwise alignments are employed to obtain these data. A
special case of progressive alignment adds a single sequence in each step, instead
of also considering alignments of larger sub-alignments.

6. Blockwise Decompositions
On the other hand, we can also decompose alignments into blocks of columns. More
precisely, we consider an alignment (X,A,≺) and a partition Q := {Y1, . . . , Yq}
satisfying the following properties:
(i) If P ∈ C(X,A) then P ⊆ Yk for some class Yk ∈ Q.
(ii) There is a partial order / onQ such that for any two distinct classes Yk, Yl ∈ Q

such that Yk /Yl whenever there are columns P ∈ Yk and Q ∈ Yl with P ≺ Q.
We call the classes of such a partition blocks. By Lemma 9 each block (X,A,≺)[Yk],
Yk ∈ Q is again an alignment.

Theorem 14. Given blocks (X,A,≺)[Yk] with Yk ∈ Q, and the partial order / on
the blocks, there is an alignment (X,A,≺/), where ≺/ is an an extension of ≺
defined by P ≺/ Q if and only if P ≺ Q for P,Q ∈ Y for some Y ∈ Q and P ≺/ Q
for P ∈ Yk and Q ∈ Yl with Yk / Yl and k, l ∈ (1, q).

Proof. Each alignment block consists of the disjoint union of alignment column(s),
thus the disjoint union of complete subgraphs. Given the partial order of alignment
columns given by P ≺ Q, this order is preserved inside the alignment blocks Yk ∈ Q
as each block is an alignment, too. Given an alignment block Y with P ≺ Q for
P,Q ∈ Y for some Y ∈ Q, one can decompose this into two blocks Yk and Yl
with at least one column in each block such that P ∈ Yk and Q ∈ Yl. Based on
the decomposition of Y into Yk and YL one can restore the order of the alignment
blocks such that Yk / Yl based on Y . Thus, one gets the order of P ≺/ Q that is
present for the alignment columns P and Q as well as for the alignment blocks Yk
and Yl. �

In the case of totally ordered inputs, the restriction Xa ∩ Y of a block Y to
an input Xa is an interval of Xa and the columns in Y form an interval of the
columns of (X,A,<). Similarly, one can restrict the choice of blocks in such a way
that / just “mirrors” the initial partial order, i.e., Yk / Yl if and only if P ≺ Q for

16 Sarah J. Berkemer, Christian Höner zu Siederdissen and Peter F. Stadler

P in Yk and Q in Yl, in which case ≺/ = ≺ and the original alignment is recovered
by the concatenation of the blocks. In particular, this also guarantees that valid
block decompositions can be constructed for alignments satisfying (A5).

Each alignment can thus be recursively decomposed into blocks. This sets the
stage for Divide-and-Conquer algorithms such as DCA [57], which cuts the sequences
to be aligned into subsequences and then concatenates the subalignments so as
to optimize a global score. In order to find the best cut-points, the algorithm
recurses on differently cut subsequences. Algorithms such as dialign [45] work
in a conceptually similar manner but use a bottom-up instead of a top-down
approach: they first identify blocks with high sequence conservation as “anchors”
and recurse to construct alignments for sequences between them.

An extreme case of the block-wise decomposition is to consider the division
of an alignment (X,A,≺) into a single maximal (or minimal) alignment column P ,
and the rest (X \P,A′,≺) of the alignment. In order for X \A/P to hold, we have
to ensure that pa 6≺a qa for all pa ∈ P and qa ∈ X \ P , i.e., the column P must
entirely consist of suprema of the respective input posets. Under this condition,
we obtain a recursive column-wise decomposition of alignments. As we shall see in
the following section, this recursion can also be used constructively.

7. Recursive Construction
Given a poset (Y,≺) we say that P ⊆ Y is a bottom set if, for all p ∈ P , every
p′ ≺ p satisfies p′ ∈ P . By definition, the empty set, Y itself, as well as the set
{p′ ∈ Y |p′ � y} for each y ∈ Y are bottom sets. Note, however, that P also may
contain points that are incomparable to all other elements of P . Denote by supP
the set of suprema of P , i.e., the points such that there is no p′ ∈ P with p ≺ p′.
Clearly, if P is a bottom set and p ∈ supP then P \ {p} is again a bottom set.
The latter observation suggests that there is a recursive construction for the set
of alignments.

For simplicity of exposition, we first consider the pairwise case, i.e., the set of
alignments of two finite posets (X1,≺1) and (X2,≺2). Denote by APQ the set of all
pairwise alignments on bottom sets P in X1 and Q in X2. An alignment A ∈ APQ
is necessarily of one of three types:
(i) A = A′(pq) with A′ ∈ AP

′

Q′ ,
(ii) A = A′(p−) with A′ ∈ AP

′

Q , or
(iii) A = A′

(−
q

)
with A′ ∈ APQ′ ,

where P ′ := P \ {p} for p ∈ supP , Q′ := Q \ {q} for q ∈ supQ, and A∅∅ contains
only the empty alignment.

The three cases correspond to a (mis)match, insertion, and deletion. It is
important to note that this recursion is in general not unique because the columns
extracted from A in consecutive steps are not necessarily ordered relative to each
other whenever | supP | ≥ 1 or | supQ| ≥ 1. It is, however, a proper generalization

Compositional Properties of Alignments 17

of the Needleman-Wunsch recursion [48] for the pairwise alignment of ordered sets
(strings): If the ≺a are total orders, then supPa always contains a single element,
and we recover the usual Needleman-Wunsch algorithm. In order to have a proper
start and end case for the recursion and thus DP-algorithm, it is convenient to
introduce “virtual” source and a sink nodes being connected to all start or end
nodes of the poset, respectively.

This idea generalizes to alignments of an arbitrary number of partial orders
in the obvious way. Denote by A(P1, P2, . . . , PN) the set of all alignments where
the Pa are a bottom set of (Xa,≺a).

Theorem 15. Every alignment A ∈ A(P1, P2, . . . , PN) is of the form A′Ξ where
the alignment column Ξ is a supremum w.r.t the partial order of ≺ of alignment
columns and A′ ∈ A(P ′1, P

′
2, . . . , P

′
N). The column Ξ contains in row a either a gap

row a, in which case P ′a = Pa, or pa ∈ supPa, in which case P ′a = Pa \ {pa}, and
does not entirely consist of gaps. For every column Υ of A′ we have either Υ ≺ Ξ
or Υ and Ξ are incomparable.

Proof. The P ′a are again bottom sets, hence A′ is an alignment. By assumption,
there is a partial order on the columns ≺ of A′. Since every non-gap entry in Ξ is
a pa ∈ supPa, it follows that this partial order extends to A if and only if Ξ is a
supremum, i.e., it is either incomparable with or larger than any column in A′. Now
suppose that the column Ξ contains a qa /∈ supPa, i.e., there is a pa ∈ Xa with
pa � qa. Consider the column Υ containing pa. Then either no partial order ≺ on
the columns exists (contradicting that A′ is an alignment), or Υ � Ξ (contradicting
that Ξ is a supremum for the alignment columns. �

The bottom sets are of course uniquely defined by their suprema. Clearly
supP is an antichain, i.e., its elements are pairwisely incomparable. Conversely,
every antichain U in (Xa,≺a) uniquely defines a bottom set P := {p ∈ Xa|p � U}.
It is obvious therefore that for two bottom sets P and Q it holds that P = Q
if and only if supP = supQ. Hence there is a 1-1 correspondence between the
antichains of a partial order and their bottom sets. The recursion in the theorem
can be written in terms of the antichains of the (Xa,≺a). Note that the recursion
of Thm. 15 can be transformed into an exact dynamic programming algorithm
for alignment of posets, provided the scoring function is the sum of column-wise
contributions.

In order to capture the more restrictive notion of alignments satisfying (A5)
the recursion has to be modified in a such a way that for every (mis)match between
two rows it can be ensured that all previously formed columns are either compa-
rable in both rows or incomparable in both rows. This is non-trivial because this
information is not purely local. For ease of discussion, we only consider the case of
aligning two posets. There are at least two strategies to maintain this information.

Attempting to construct a similar recursion as in the (A4) case, one could
store with each pair P ∈ X1 and Q ∈ X2 also all the setM of all matchings (pq)
“to the right” of P and Q, i.e., p ∈ X1 \ P and q ∈ X1 \ Q. Then every allowed

18 Sarah J. Berkemer, Christian Höner zu Siederdissen and Peter F. Stadler

matching/column
(
p′

q′

)
, p′ ∈ supP and q′ ∈ supQ must satisfy: for all (pq) ∈ M

holds: either p′ ≺ p and q′ ≺ q, or both p′, p and q′, q are incomparable. Every
such pair can be appended toM, with corresponding updates P → P \ {p′} and
Q→ Q \ {q′}. Insertions and deletions of course only require the removal of either
p′ from P or q′ from Q, respectively. Initially, P = X1, Q = X2, and M = ∅.
Every set of valid partial alignments is characterized by a triple (P,Q,M).

An alternative approach is to store instead for each p ∈ P and q ∈ Q also the
sets cQ(p) and cP (q) that can form matches

(p
q′
)
, q′ ∈ cQ(p) and

(
p′

q

)
, p ∈ cP (q),

respectively. Initially, we have P = X1, Q = X2, cQ(p) = Q for all p ∈ P and
cP (q) = P for all q ∈ Q. Whenever an alignment is continued with a (mis)match
(pq), p ∈ supP , q ∈ supQ, we have to remove all candidates from cP (q′) and cQ(p′)
that are inconsistent with (pq). That is: if q′ ≺ q, then cP (q′) ← {p′ ∈ cP (q′)|p′ ≺
p}. If q and q′ and incomparable, then cP (q′)← {p′ ∈ cP (q′)|p′, p incomparable}.
The cQ(p′) are updated correspondingly. In the case of an insertion (

p
−), we only

need to remove p from fP (q′), q′ ∈ Q. Similarly,
(−
q

)
implies that q has to be

removed from the fQ(p′) for all p′ ∈ P . We suspect that an encoding of align-
ment sets of the form (P, fQ : P → 2P ;Q, fP : Q → 2P) will be efficient if the
poset has only small antichains. A more detailed analysis of this kind of recursive
construction from the point of view of algorithmic efficiency will be considered
elsewhere.

The POA algorithm [40] computes the alignment of two posets satisfying
(A5), albeit with the restriction that one of the two inputs is totally ordered. This
removes all ambiguities in the totally ordered poset and implies that, given any
match (uv) in the alignment, all preceding matches

(
u′

v′

)
satisfy v′ < v in the totally

ordered set and thus u′ must be a predecessor of u. The alignment thus must follow
a single path in the Hasse diagram of the unrestricted input poset.

The recursive formulation of the poset alignments is an extension of the well-
known Needleman-Wunsch alignment algorithm. Beyond many implementations of
the Needleman-Wunsch algorithm, the implementation based on ADPfusion (Al-
gebraic Dynamic Programming with compile-time fusion of grammar and algebra)
[27] is designed in a way to be extendable to different scoring functions, problem
descriptions, and data structures [28]. Future work thus will include the adapta-
tion of the ADPfusion framework written in a functional language (Haskell) to the
data structure of posets. Earlier adaptations of the Needleman-Wunsch algorithm
to trees, forests and sets already exist [5, 29].

8. Alignments as Relations
Pairwise alignments have a particularly simple structure. In particular, they are
bipartite (undirected) graphs, and hence can be regarded equivalently as symmet-
ric binary relations R ⊆ X1 × X2. More precisely, we can identify a relation R
with an undirected graph with vertex set X1∪̇X2 and (undirected) edges {x1, x2}
whenever (x1, x2) ∈ R. We write this graph as (X1∪̇X2, R).

Compositional Properties of Alignments 19

Relations have a natural composition. For R ⊆ X × Y and S ⊆ Y × Z is
defined by

(x, z) ∈ S ◦R iff ∃y ∈ Y s.t. (x, y) ∈ R and (y, z) ∈ S (4)

In the following we will be interested in the following properties of binary
relations:
(M) (x, y) ∈ R and (x, z) ∈ R implies y = z and (x, z) ∈ R and (y, z) ∈ R implies

x = y.
(P’) There is a partial order ≺ on R such that u ≺1 x or v ≺2 y implies (u, v) ≺

(x, y).
(P) If (x1, y1) ∈ R and (x2, y2) ∈ R then x1 ≺ x2 if and only if y1 ≺ y2.

Lemma 16. The composition of two binary relations satisfying (M) and (P) is
again a binary relation satisfying (M) and (P).

Proof. Suppose (x, z) ∈ R ◦ S. Then there is y such that both (x, y) ∈ R and
(y, z) ∈ S. By (M), there is no other y′ 6= y with (x, y′) ∈ R and no z′ 6= z such
that (y′, z′) ∈ S, hence in particular there is no z′ 6= z such that (x, z′) ∈ R ◦ S.
Analogously, one argues that there is no x′ 6= x such that (x′, z) ∈ R ◦ S. Thus
R ◦ S again satisfies (M).

Suppose (x1, z1), (x2, z2) ∈ R ◦ S. By (M) there are unique vertices y1 and
y2 such that (x1, y1), (x2, y2) ∈ R and (y1, z1), (y2, z2) ∈ S, respectively. Now
suppose x1 ≺1 x2. Then (P) implies y1 ≺2 y2, and using (P) again yields z1 ≺3 z2.
Starting from z1 ≺3 z2, the same argument yields z1 ≺1 z2. Conversely, suppose
(x1, z1), (x2, z2) ∈ R ◦ S and x1, x2 are incomparable. By (M) there are unique
vertices y1 and y2 with (x1, y1), (x2, y2) ∈ R and (y1, z1), (y2, z2) ∈ S, for which
(P) now implies that they are incomparable. Using the same argument again shows
that that z1 and z2 also must be incomparable. Hence concatenation preserves not
only the relative order but also comparability, i.e., R ◦ S again satisfies (P). �

It is easy to see that Axiom (P’) is in general not preserved under con-
catenation: Requiring only (P’) allows the intermediate vertices y1 and y2 to be
incomparable. Hence it is possible in this scenario to have x1 ≺1 x2, incomparable
vertices y1 and y2, and z2 ≺3 z1 with (x1, y1), (x2, y2) ∈ R and (y1, z1), (y2, z2) ∈ S
while the concatenation violates the (P’).

A relation satisfying (M) and (P’) can easily be extended to an alignment
(X1 ∪ X2, R) considering each edge (x1, y1) and considering all unmatched posi-
tions, i.e., every {x′} such that there is no y ∈ X2(x′, y) and every {y′} such that
there is no x ∈ X1(x, y′) as alignment columns. The relative order of these columns
is inherited from the partial order (X1,≺1) and (X2,≺2).

Lemma 17. Every pairwise alignment satisfying (A1), (A2), (A3), and (A4) can
be written as an extension of the a binary relation R ⊆ X1 × X2 satisfying (M)
and (P’). Conversely, every binary relation R ⊆ X1 ×X2 satisfying (M) and (P’)
gives rise to an alignment satisfying (A1), (A2), (A3), and (A4).

20 Sarah J. Berkemer, Christian Höner zu Siederdissen and Peter F. Stadler

Proof. By definition, all edges are incident to one vertex in X1 and one vertex in
X2, thus the graph is a bipartite matching. Condition (M) is therefore equivalent to
(A1) and (A2) for the case of two input posets. Axiom (A3) implies the ordering
required by (P’) as well as its extension to the in/del columns. (A4) and (P’)
equivalently guarantee the existence of the partial order on the columns that satisfy
(A3). �

Theorem 18. Every pairwise alignment satisfying (A5) corresponds to a binary
relation R ⊆ X1 ×X2 satisfying (M) and (P).

Proof. Axiom (A5) simplifies to (P) in the case of only two inputs. The existence of
the required partial order on the set of all columns is guaranteed by Lemma 8. �

This suggests that the more restrictive condition (A5) may be a more natural
condition for defining alignments of partially ordered sets. As a down-side, however,
it seems that there is no convenient recursive construction of the search space
similar to the dynamic programming approaches for sequence alignment. Instead, it
seems more natural to treat this class of alignment problems as maximum induced
subgraph problems.

Composition of binary relations is a powerful tool to construct multiple align-
ments. Suppose we are given a set of posets (Xa,≺a) and a set R of pairwise
relations satisfying (M) and (P) such that the graph representation of R is tree,
then there is a unique multiple alignment satisfying (A5) obtained as the transitive
closure of the graph on X with edges defined by the R ∈ R. However, not every
alignment can be represented in this manner. As a simple counterexample consider
the alignment of the three sequences

a A-C a A-C a A-C
b -BC b -BC b -BC b -BC
c AB- c AB- c A-B-

where the composition of any two pairwise alignments gives rise to two different
columns for in/del columns of the pairwise components, in the example of two
A entries. On the other hand the progressive approach, in which sequence c is
aligned to the pairwise alignment of a and b yields the example alignment. In fact,
Lemma 12 implies that in principle every alignment can be obtained by a progres-
sive alignment scheme. If R contains cycles, then there is no guarantee that the
transitive closure Â of

⋃
R∈RR is an alignment: In general, both conditions (A1)

and (A2) will be violated. So-called transitive alignment approaches deliberately
accept this at an intermediate stage. Various heuristics can be used to remove su-
perfluous edges from the graph (X, Â), that is they construct a subgraph (X,A),
A ⊆ Â that again satisfies all conditions of a valid alignment.

Compositional Properties of Alignments 21

Figure 5. Example of a forest alignment of three forests (bot-
tom). The resulting forest (top) is the superstructure combining
all of the input trees. The nodes labels correspond to alignment
columns and blue nodes indicate matches such that they exist
in all the input trees. Original trees can be recovered from the
supertree by only taking nodes without gap symbol in the cor-
responding alignment column. A node with gap symbol is then
removed and its edges contracted such that its children will be
the its parents children afterwards. This can be seen in F1 where
node b does not exist and nodes c1 and h1 become children of the
root a1.

9. Tree Alignments

A rooted tree with vertex set V is uniquely defined by two mutually exclusive
partial order relations: the ancestor order ≺ defined such that x � y whenever y
is located on the path from x to the root, and the sibling order / defined in terms
of the ordering of the children of each vertex: For two vertices x and y that are
incomparable w.r.t. ≺, let w be their last common ancestor and u and v be the
distinct children of w such that x � u and y ≺ v. Then x / y if and only if u / v.
By construction, two vertices are either identical or comparable w.r.t. either the
ancestor or the sibling order. The observation extends to ordered forests, where
the sibling order is extended such that vertices from any two constituent subtrees
are are always comparable w.r.t. the sibling order.

22 Sarah J. Berkemer, Christian Höner zu Siederdissen and Peter F. Stadler

Consider a forest T with vertex set V and define Tv with vertex set V \{v} as
follows: (1) if v is the root of a subtree, delete v and replace the tree T (v) rooted
at v by trees rooted at the children of v in sibling order; (2) if v is not the root of
a subtree, contract the edge from the parent of v to v. That is, the children of v
become children of the parent of v. It is not hard to check that both the ancestor
and sibling orders for Tv is simply the restriction of ≺ and / to V \ {v}.

A forest alignment is defined as a forest T such that each vertex v is labeled
by an alignment column Qv. The constituent tree Ts, s ∈ S is obtained from
T by first simplifying the label on T to Qv ∩ Xs at each vertex v; then all v
with Qv ∩Xs = ∅ are removed by deletion or contraction of their parent edge as
outlined above [30, 26, 5]. Thus Ts has the vertex set V ′ := {v ∈ V |Qv ∩Xs 6= ∅}
and both its ancestor and sibling orders are the restriction of ≺ and / to V ′. Tree or
forest alignments thus fit seamlessly into the mathematical formal for partial order
alignments. We simply have to require that the alignment graph (X,A) satisfies
(A1) and (A2) and that properties (A3) and (A5) hold w.r.t. both partial orders ≺
and /. This observation suggest how alignments satisfying an analog of (A5) can
be defined in a meaningful way for a much broader class of discrete structures.

A notion of alignment similar to tree/forest alignments is used in compu-
tational biology for RNA structures, where base pairs need to be preserved in
addition the total order of the input sequences [44]. Here, however, only consis-
tency similar in flavor to (A4) is enforced, suggesting that it may also be of interest
to relax the requirement that restriction to the columns Q for which Q ∩Xa 6= ∅
exactly recovers the input tree (Xa,≺a, /a).

10. Alignments of Graphs
In Section 4 we have seen that alignments of partially ordered sets can alternatively
be viewed as alignments of graphs from a very restricted class, namely transitive
acyclic digraphs. This begs the question whether the construction can be general-
ized to arbitrary (di)graphs. In this section we consider an input set of digraphs
Ga, a ∈ S, with with vertex sets V (Ga) = Xa and edge sets E(Ga), resp. As
before, we write X =

⋃
· V (Ga), introduce a set of alignment edges A, and denote

by C(X,A) be the set of connected components of the (undirected) graph (X,A).

Definition 19. A triple (X,A,E∗), where A is a set of unordered pairs on X and
E∗ is a relation on C(X,A), is a multiple alignment of the graphs Ga, a ∈ S, where
A if the following conditions are satisfied:
(G1) Q ∈ C(X,A) is complete subgraph of (X,A).
(G2) If (a, i) ∈ Q and (a, j) ∈ Q, then i = j.
(G3) If (a, i) ∈ P , (a, j) ∈ Q for some P,Q ∈ C(X,A) and ((a, i), (a, j)) ∈ E(Ga)

then (P,Q) ∈ E∗
(G4) If (P,Q) ∈ E∗ then there is a row a with (a, i) ∈ P , (a, j) ∈ Q and

((a, i), (a, j)) ∈ E(Ga),
(G5) If (P,Q) ∈ E∗, (a, i) ∈ P , and (a, j) ∈ Q then ((a, i), (a, j)) ∈ E(Ga).

Compositional Properties of Alignments 23

Condition (G4) is redundant and is included here only to emphasize the
similarity to the constructions in the previous sections. It may also be interesting
to consider graph alignments that satisfy only (G4) but not (G5).

Lemma 20. (C(X,A), E∗) ' (X,
⋃
a∈S E(Ga))/C(X,A).

Proof. The vertex set X/C(X,A) has a single representative for each column Q ∈
C(X,A). By axioms (G3) and (G5), there is an edge (P,Q) ∈ E∗ if and only there
(a, i) ∈ P and (a, j) ∈ Q with ((a, i), (a, j)) ∈ E(Ga) for some a ∈ S. The edge set
on the r.h.s., amounts to identical condition. �

Thus (C(X,A), E∗) is obtained from (X,
⋃
a∈S E(Ga)) by identifying the ver-

tices within each alignment column. In particular, therefore, the set Q′ of columns
Q such that Q ∩ Xa 6= ∅ for all a in a given subset S′ ⊆ S forms an induced
subgraph (C(X,A), E∗) that is present in each Ga. Observation 5 thus remains
true for graphs in general:

Observation 5. Let (X,A,E∗) be an alignment of graphs (Xa, Ea), S′ ⊆ S a subset
of columns, and Q′ ⊆ C(X,A) such that Xa ∩ Q 6= ∅ for all a ∈ S′ and Q ∈ Q′.
Then the graph with vertex set Q′ and edge set E∗ is an induced subgraph of (the
graph representation of) (Xa, Ea).

We note in passing that alignments of ordered and partially ordered sets
assuming axiom (A5) are special cases of the graph alignments satisfying (G5),
since total and partial orders are isomorphic to transitive acyclic digraphs. One
easily checks that (G3) and (G5) indeed reduce to the corresponding statements
for the (partial) orders.

Again this is in particular true for pairwise alignments. Given two graphs
G1 and G2 and a common induced subgraph H (strictly speaking together with
an embedding of H into G1 and G2) the graph defined by identifying the copies
of H in G1 and G2 is pairwise alignment G1 •H G2 of the input graphs. Natu-
rally, an optimization criterion will be used in practice. The problem of aligning
graphs therefore coincides with the maximum common induced subgraph prob-
lem. Finding maximal induced common subgraphs (MCIS) is well known to be
a NP-complete problem and closely related to the maximal common edge sub-
graph problem (MCES), together often referred to as the maximal common sub-
graph problem (MCS) [16, 12]. However, several approaches exist to find exact
or approximate solutions for connected (cMCS) or disconnected (dMCS) common
subgraphs using different algorithmic strategies such as backtracking algorithms,
dynamic programming, or clique-finding.

It is very easy to check that Lemmas 9, 10 and 12 – and thus also Thm. 13 –
remain true for the graph alignments of Definition 19. Indeed, the alignment of two
graphs is again a graph. Its vertices, corresponding to the columns of the alignment,
are labeled by the content of the columns. Therefore, we can build alignments of
alignments for graphs. In particular, furthermore, progressive alignments of graphs
are well-defined. Given a guide tree T , at each inner node of T the maximum

24 Sarah J. Berkemer, Christian Höner zu Siederdissen and Peter F. Stadler

Figure 6. Example for (progressive) graph alignment of G1 and
G2 (top) with aligned graph structure on the r.h.s and alignment
of (G1, G2) with G3 and aligned graph structure again on the
r.h.s. Dashed blue lines show matches between nodes of the in-
put graphs. Labels at nodes correspond to alignment columns,
indices refer to input graphs G1, G2 or G3. The red subgraph is
the maximal common induced subgraph of all three input graphs.

common induced subgraph of the graphs at its child-nodes is computed, and the
graphs are “glued together” at the common vertices.

It is important to note the graph alignment in the sense used here – namely
requiring a matching between vertices and notion of structural congruence between
the alignment and its constituent graphs – are more restrictive than some concepts
of “graph alignments” discussed in the literature. In particular, we make a sharp
distinction here between “graph alignments” and various approaches of comparison
by means of graph editing, see e.g. [18] for a recent review.

Compositional Properties of Alignments 25

11. Alignments for General Structures

So far, we have considered alignments for sequences (strings), partially ordered
sets, rooted ordered trees, and graphs. How far can we generalize the idea of align-
ments, and what are minimal conditions for well-defined alignments? Let us start
from a finite space (X,S) with some structure S . We are not really interested
in the particular properties of S . Examples for S might be systems of not nec-
essarily binary relations, topologies, proximities, etc. As a minimum requirement
we ask that (X,S) admits well-defined subspaces, that is, if Y ⊆ X, then there
exists a unique subspace (Y,SY) =: (X,S)[Y]. Furthermore we require that

(X,S)[Z] = ((X,S)[Y])[Z] (5)

holds for all Z ⊆ Y ⊆ X, i.e., that induces subspaces that can be formed step-
wisely in a consistent manner. This property is satisfied for the examples we have
considered so far: strings and totally ordered sets in general, partial orders, as
well as directed and undirected graphs. It also holds for ternary relations such as
betweenness, as well as topologies, proximities, and similar constructions.

Now suppose we are given input spaces (Xa,Sa) for all a ∈ S. As in the
previous sections, we set X :=

⋃
· a∈S Xa, we introduce a set A of edges connecting

the vertices in X and write C(X,A) for the set of connected components of the
graph (X,A). Furthermore, we define

Ca := {Q ∈ C(X,A)|Q ∩Xa 6= ∅}.

Endowing C(X,A) with some structure S consider the subspace (X,S)[Ca] ob-
tained from (X,S) to the connected components (columns) of (X,A) in which
Xa is represented. As in the previous sections we assume

(X1) (X,A)[Q] is a complete graph for all Q ∈ C(X,A), and
(X2) |Xa ∩Q| ≤ 1 for all a ∈ S and Q ∈ C(X,A).

Assumption (X1) implies that there is a 1-1 correspondence between the columns of
Q ∈ Ca and the elements q ∈ Xa define by Q∩Xa = {q}. Denote the corresponding
map by πa : Ca → Xa. The condition that “projecting” (C(X,A),S) down the
constituent rows a ∈ S recovers the input spaces can then be expressed as

(X3) (C(X,A),S)[Ca] ' (Xa,Sa) with πa being an isomorphism.

This construction provides a well-defined notion of an alignment in a very general
setting. Again, the restriction of the alignment to a set C′ of columns that are
represented in Xa for all a ∈ S′, i.e., (C(X,A),S)[C′] is a common subspace of
the (Xa,Sa) with a ∈ S′. This corresponds the poset alignments satisfying (A5).

Properties (X1), (X2), and (X3) are sufficient to ensure that key properties of
totally ordered alignments still hold in this much more general setting. Repeating
the simple arguments leading to Lemmas 9, 10 and 12 above, we observe:

(i) The restriction (X,A,S)[Y] to Y ⊆ X is an alignment for the restricted
input spaces (Xa,Sa)[Xa ∩ Y].

26 Sarah J. Berkemer, Christian Höner zu Siederdissen and Peter F. Stadler

(ii) If P is a partition of X into groups of rows, the quotient (X,A,S)/P
is an alignment of alignments: The rows of (X,A,S)/P are of the form
(C(X,A),S)[C′], where C′ := {C ∈ C(X,A)|C ∩ Xa 6= ∅, a ∈ S′} where
S′ ⊆ S determines a class of the row-wise partition P. That is, every row of
(X,A,S)/P is (isomorphic to) a subspace of (C(X,A),S).

(iii) For a given class of P determined by the row indices, we observe that by con-
struction the restriction of (X,A,S)[Y] to Y :=

⋃
· a∈S′ Xa is isomorphic to

(C(X,A),S)[C′]. By assumption, (C(X,A),S)[Ca] = ((C(X,A),S)[C′])[Ca]
for all a ∈ S′. Therefore we can construct (X,A,S) as the alignment
(X,A,S)/P of the alignments (X,A,S)[Y] of the rows in each class of the
partition P.

We conclude therefore, that alignments defined by (X1), (X2), and (X3) can be
decomposed recursively into alignments of alignments on all spaces with subspaces
satisfying equ. (5). In particular, these properties are sufficient to guarantee that
progressive alignments are well defined.

A natural question that arises at this abstract level is whether for any col-
lection (Xa,Sa), a ∈ S, there exists an alignment. To answer this question we
consider trivial alignments for which A = ∅. Then every alignment column con-
tains an element from exactly one of the Xa. Thus there is a 1-1 correspondence
between C(X, ∅) and X, ensuring that (X, ∅,S) and (X,S) are isomorphic. By
(X3), (X, ∅,S) is an alignment of the (Xa,Sa) whenever (X,S ∗)[Xa] ' (Xa,S)
for all a ∈ S. The existence of such a “disjoint union” (X,S ∗) is thus a sufficient
condition for the existence of alignments. All the examples discussed in this section
allow such “disjoint unions” and hence support alignments of arbitrary input data.

12. Concluding Remarks

In this contribution we have analyzed the compositional properties of sequence
alignments and explored the generalization to much more general structures. We
find that meaningful concepts of alignments are not restricted to ordered sets as
inputs, but can be extended to very general relational or topological structures
that need not bear any resemblance with order relations. The key property of
the generalized alignments considered here is that the restriction of the alignment
to a row recovers the input row. While this property is a simple consequence
for the familiar sequence alignments, it becomes an important defining property
of alignments in general. It suffices under very mild conditions of the structure
of input spaces to ensure that alignments of alignments and recursive, row-wise
decompositions of alignments are well-defined. We have observed, furthermore,
that some well-studied examples of alignment problems, such as tree alignment and
the alignment of totally ordered sets to a poset seamlessly fit into the framework
developed here.

Compositional Properties of Alignments 27

In this setting, alignments are defined on common subspaces. In the case of
graph alignments, alignment columns corresponding to (mis)matches form com-
mon induced subgraphs. The pairwise alignment problem for two input graphs G1

andG2 therefore boils down to the problem of finding a maximum common induced
subgraph (MICS). The MICS is a well-known NP-hard problem, which can be re-
duced to clique finding [4]. Nevertheless it is of substantial practical importance,
in particular in chemoinformatics, since molecules are conveniently represented
as graphs. A variety of practically applicable algorithms are therefore available
[52, 16, 12]. In addition to clique-finding, dynamic programming algorithms have
been explored in particular for restricted classes of graphs [1, 21]. In the setting
of graph alignments, it may be interesting not only to score the matches, i.e.,
the common induced subgraph, but also the insertions and deletions, possibly re-
quiring modified algorithmic approaches. We will explore aspects of scoring graph
alignments and the computation of pairwise and multiple alignments of graph in
future work.

In the context of poset alignments we also explored notions of alignments
that require less stringent conditions than the exact recovery of the structure of
each input row: it also seems to be of interest to require only that the restriction to
a row is an extension of the input order. In the case of graphs, a similarly relaxed
condition would only require that the input is a subgraph of the restriction. RNA
structures may be considered as totally ordered sets that in addition carry a graph
structure defined by the base pairs. Structure annotated alignments, then, have to
recover the sequence order upon restriction to the input order, while the restriction
of consensus base pairing on the alignment columns only needs to be a subgraph
of the input base pairings. It will certainly be interesting to study such relaxed
requirements on structure preservation more systematically in future work.

The fact that (multiple) alignments can be defined for very general structures,
in essence for finite spaces with reasonably well-behaved notions of subspaces, sug-
gests that alignments may be of interest as mathematical objects also for infinite
spaces. Can the idea of alignments be captured in the language of category the-
ory, is there an interesting class of categories that admit well-defined alignments
objects, and do the resulting alignments themselves form categories with useful
properties?

Acknowledgements

This work was supported in part by the German Academic Exchange Service
(DAAD), proj.no. 57390771.

28 Sarah J. Berkemer, Christian Höner zu Siederdissen and Peter F. Stadler

References
[1] Tatsuya Akutsu. A polynomial time algorithm for finding a largest common sub-

graph of almost trees of bounded degree. IEICE transactions on fundamentals of
electronics, communications and computer sciences, 76:1488–1493, 1993.

[2] Stephen F Altschul, Thomas L Madden, Alejandro A Schäffer, Jinghui Zhang, Zheng
Zhang, Webb Miller, and David J Lipman. Gapped BLAST and PSI-BLAST: a new
generation of protein database search programs. Nucleic Acids Res., 25:3389–3402,
1997.

[3] Shakuntala Baichoo and Christos A. Ouzounis. Computational complexity of algo-
rithms for sequence comparison, short-read assembly and genome alignment. Biosys-
tems, 156/157:72–85, 2017.

[4] H G Barrow and R M Burstall. Subgraph isomorphism, matching relational struc-
tures and maximal cliques. Information Processing Letters, 4:83–84, 1976.

[5] Sarah J Berkemer, Christian Höner zu Siederdissen, and Peter F Stadler. Algebraic
dynamic programming on trees. Algorithms, 10:135, 2017.

[6] Tanmoy Bhattacharya, Damian Blasi, William Croft, Michael Cysouw, Daniel Hr-
uschka, Ian Maddieson, Lydia Müller, Nancy Retzlaff, Eric Smith, Peter F. Stadler,
George Starostin, and Hyejin Youn. Studying language evolution in the age of big
data. J. Language Evol., 3:94–129, 2018.

[7] Paola Bonizzoni and Gianluca Della Vedova. The complexity of multiple sequence
alignment with SP-score that is a metric. Theor. Comp. Sci., 259:63–79, 2001.

[8] H. Bunke. On a relation between graph edit distance and maximum common sub-
graph. Pattern Recognition Letters, 18:689–694, 1997.

[9] Humberto Carrillo and David Lipman. The multiple sequence alignment problem in
biology. SIAM J. Appl. Math., 48:1073–1082, 1988.

[10] Michael Cysouw and Hagen Jung. Cognate identification and alignment using prac-
tical orthographies. In Proceedings of Ninth Meeting of the ACL Special Interest
Group in Computational Morphology and Phonology, pages 109–116. Association for
Computational Linguistics, 2007.

[11] Chuong B Do, Mahathi SP Mahabhashyam, Michael Brudno, and Serafim Batzoglou.
ProbCons: Probabilistic consistency-based multiple sequence alignment. Genome
Res., 15:330–340, 2005.

[12] Edmund Duesbury, John Holliday, and Peter Willett. Comparison of maximum com-
mon subgraph isomorphism algorithms for the alignment of 2D chemical structures.
ChemMedChem, 13:588–598, 2018.

[13] Richard Durbin, Sean R Eddy, Anders Krogh, and Graeme Mitchison. Biological se-
quence analysis: probabilistic models of proteins and nucleic acids. Cambridge Uni-
versity Press, Cambridge, UK, 1998.

[14] R C Edgar and S Batzoglou. Multiple sequence alignment. Curr Opin Struct Biol,
16:368–373, 2006.

[15] Robert C Edgar. MUSCLE: multiple sequence alignment with high accuracy and
high throughput. Nucleic Acids Res., 32:1792–1797, 2004.

Compositional Properties of Alignments 29

[16] Hans-Christian Ehrlich and Matthias Rarey. Maximum common subgraph isomor-
phism algorithms and their applications in molecular science: a review. Wiley Inter-
disciplinary Reviews: Computational Molecular Science, 1:68–79, 2011.

[17] Isaac Elias. Settling the intractability of multiple alignment. J. Comp. Biol., 13:1323–
1339, 2006.

[18] Frank Emmert-Streib, Matthias Dehmer, and Yongtang Shi. Fifty years of
graph matching, network alignment and network comparison. Information Sci.,
346/347:180–197, 2016.

[19] Ronald Fagin, Ravi Kumar, and D. Sivakumar. Comparing top-k lists. SIAM J.
Discr. Math., 17:134–160, 2003.

[20] Da-Fei Feng and Russell F Doolittle. Progressive sequence alignment as a prerequisite
to correct phylogenetic trees. J. Mol. Evol., 25:351–360, 1987.

[21] Fedor V. Fomin, Ioan Todinca, and Yngve Villanger. Exact algorithm for the max-
imum induced planar subgraph problem. In Camil Demetrescu and Magnús M.
Halldórsson, editors, Proceedings of the 19th European conference on Algorithms,
volume 6942 of Lecture Notes Comp. Sci., pages 287–298, Berlin, Heidelberg, 2011.
Springer-Verlag.

[22] O Gotoh. An improved algorithm for matching biological sequences. J. Mol. Biol.,
162:705–708, 1982.

[23] O. Gotoh. Alignment of three biological sequences with an efficient traceback proce-
dure. J. theor. Biol., 121:327–337, 1986.

[24] Manfred G. Grabherr, Pamela Russell, Miriah Meyer, Evan Mauceli, Jessica Alföldi,
Federica Di Palma, and Kerstin Lindblad-Toh. Genome-wide synteny through highly
sensitive sequence alignment: Satsuma. Bioinformatics, 26:1145–1151, 2010.

[25] Catherine Grasso and Christopher Lee. Combining partial order alignment and pro-
gressive multiple sequence alignment increases alignment speed and scalability to
very large alignment problems. Bioinformatics, 20:1546–1556, 2004.

[26] Michael Höchsmann, Björn Voss, and Robert Giegerich. Pure multiple RNA sec-
ondary structure alignments: a progressive profile approach. IEEE/ACM Trans.
Comp. Biol. Bioinf., 1:53–62, 2004.

[27] Christian Höner zu Siederdissen. Sneaking around concatMap: Efficient combinators
for dynamic programming. In Proceedings of the 17th ACM SIGPLAN international
conference on Functional programming, ICFP ’12, pages 215–226, New York, NY,
USA, 2012. ACM.

[28] Christian Höner zu Siederdissen, Ivo L. Hofacker, and Peter F. Stadler. Prod-
uct grammars for alignment and folding. IEEE/ACM Trans. Comp. Biol. Bioinf.,
12:507–519, 2015.

[29] Christian Höner zu Siederdissen, Sonja J. Prohaska, and Peter F. Stadler. Algebraic
dynamic programming over general data structures. BMC Bioinformatics, 16 Suppl
19:S2, 2015.

[30] Tao Jiang, Lusheng Wang, and Kaizhong Zhang. Alignment of trees – an alternative
to tree edit. Theor. Comp. Sci., 143:137–148, 1995.

[31] Winfried Just. Computational complexity of multiple sequence alignment with SP-
score. J. Comp. Biol., 8:615–623, 2001.

30 Sarah J. Berkemer, Christian Höner zu Siederdissen and Peter F. Stadler

[32] Kazutaka Katoh, Kei-ichi Kuma, Hiroyuki Toh, and Takashi Miyata. MAFFT version
5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res.,
33:511–518, 2005.

[33] J. D. Kececioglu. The maximum weight trace problem in multiple sequence align-
ment. In Proceedings of the 4th Symposium on Combinatorial Pattern Matching,
volume 684 of Lecture Notes Comp. Sci., pages 106–119, Berlin, 1993. Springer.

[34] John Kececioglu and Dean Starrett. Aligning alignments exactly. In Philip E. Bourne
and Dan Gusfield, editors, Proceedings of the 8th ACM Conference on Research in
Computational Molecular Biology (RECOMB), pages 85–96, New York, NY, 2004.
ACM.

[35] A. S. Konagurthu, J. Whisstock, and P. J. Stuckey. Progressive multiple alignment
using sequence triplet optimization and three-residue exchange costs. J. Bioinf. and
Comp. Biol., 2:719–745, 2004.

[36] Grzegorz Kondrak. A new algorithm for the alignment of phonetic sequences. In
Proceedings of NAACL 2000 1st Meeting of the North American Chapter of the
Association for Computational Linguistics, pages 288–295, San Francisco, CA, USA,
2000. Morgan Kaufmann Publishers Inc.

[37] Matthias Kruspe and Peter F. Stadler. Progressive multiple sequence alignments
from triplets. BMC Bioinformatics, 8:254, 2007.

[38] Mark A Larkin, Gordon Blackshields, N P Brown, R Chenna, Paul A McGettigan,
Hamish McWilliam, Franck Valentin, Iain MWallace, Andreas Wilm, Rodrigo Lopez,
J D Thompson, T J Gibson, and D. G. Higgins. Clustal W and Clustal X version
2.0. Bioinformatics, 23:2947–2948, 2007.

[39] Christopher Lee. Generating consensus sequences from partial order multiple se-
quence alignment graphs. Bioinformatics, 19:999–1008, 2003.

[40] Christopher Lee, Catherine Grasso, and Mark F. Sharlow. Multiple sequence align-
ment using partial order graphs. Bioinformatics, 18:452–464, 2002.

[41] David J Lipman, Stephen F Altschul, and John D Kececioglu. A tool for multiple
sequence alignment. Proc. Natl. Acad. Sci. USA, 86:4412–4415, 1989.

[42] Ketil Malde and Tomasz Furmanek. Increasing sequence search sensitivity with tran-
sitive alignments. PloS one, 8:e54422, 2013.

[43] Bodo Manthey. Non-approximability of weighted multiple sequence alignment.
Theor. Comp. Sci., 296:179–192, 2003.

[44] Mathias Möhl, Sebastian Will, and Rolf Backofen. Lifting prediction to alignment
of RNA pseudoknots. J Comput Biol., 17:429–442, 2010.

[45] Burkhard Morgenstern. DIALIGN 2: improvement of the segment-to-segment ap-
proach to multiple sequence alignment. Bioinformatics, 15:211–218, 1999.

[46] Burkhard Morgenstern, Andreas Dress, and Thomas Werner. Multiple DNA and
protein sequence alignment based on segment-to-segment comparison. Proc. Natl.
Acad. Sci. USA, 93:12098–12103, 1996.

[47] Burkhard Morgenstern, Jens Stoye, and Andreas W. M. Dress. Consistent equiva-
lence relations: a set-theoretical framework for multiple sequence alignments. Tech-
nical report, University of Bielefeld, FSPM, 1999.

Compositional Properties of Alignments 31

[48] Saul B Needleman and Christian D Wunsch. A general method applicable to the
search for similarities in the amino acid sequence of two proteins. J. Mol. Biol.,
48:443–453, 1970.

[49] Cédric Notredame, Desmond G Higgins, and Jaap Heringa. T-coffee: a novel method
for fast and accurate multiple sequence alignment. Journal of molecular biology,
302:205–217, 2000.

[50] Wolfgang Otto, Peter F. Stadler, and Sonja J. Prohaska. Phylogenetic footprinting
and consistent sets of local aligments. In R. Giancarlo and G. Manzini, editors, CPM
2011, volume 6661 of Lecture Notes in Computer Science, pages 118–131, Heidelberg,
Germany, 2011. Springer-Verlag.

[51] Mikko Rautiainen and Tobias Marschall. Aligning sequences to general graphs in
O(V +mE) time. Technical report, bioRxiv, 2017.

[52] John Raymond and Peter Willett. Maximum common subgraph isomorphism al-
gorithms for the matching of chemical structures. J. Computer-Aided Mol. Design,
16:521–533, 2002.

[53] Nancy Retzlaff and Peter F. Stadler. Partially local multi-way alignments. Math.
Comp. Sci., 12:207–234, 2018.

[54] David Sankoff and Joseph Kruskal, editors. Time Warps, String Edits and Macro-
molecules: the theory and practice of Sequence Comparison. Addison-Wesley, London,
U.K., 1983.

[55] Temple F Smith and Michael S Waterman. Comparison of biosequences. Adv. Appl.
Math., 2:482–489, 1981.

[56] Lydia Steiner, Peter F Stadler, and Michael Cysouw. A pipeline for computational
historical linguistics. Language Dynamics & Change, 1:89–127, 2011.

[57] Jens Stoye, Vincent Moulton, and Andreas W M Dress. DCA: an efficient imple-
mentation of the divide-and-conquer approach to simultaneous multiple sequence
alignment. Comput. Appl. Biosci., 13:625–626, 1997.

[58] Jochen Tiepmar and Gerhard Heyer. An overview of canonical text services. Lin-
guistics Literature Studies, 5:132–148, 2017.

[59] Kavya Vaddadi, Naveen Sivadasan, Kshitij Tayal, and Rajgopal Srinivasan. Sequence
alignment on directed graphs. Technical report, bioRxiv, 2017.

[60] Cristian A Velandia-Huerto, Sarah J Berkemer, Anne Hoffmann, Nancy Retzlaff, Lil-
iana C Romero Marroquín, Maribel Hernández Rosales, Peter F Stadler, and Clara I
Bermúdez-Santana. Orthologs, turn-over, and remolding of tRNAs in primates and
fruit flies. BMC Genomics, 17:617, 2016.

[61] L Wang and T Jiang. On the complexity of multiple sequence alignment. J Comput
Biol, 1:337–348, 1994.

[62] H T Wareham. A simplified proof of the NP- and MAX SNP-hardness of multiple
sequence tree alignment. J Comput Biol., 2:509–514, 1995.

[63] J G Wolff. Syntax, parsing and production of natural language in a framework of
information compression by multiple alignment, unification and search. J. Universal
Comp. Sci., 6(8):781–829, 2000.

32 Sarah J. Berkemer, Christian Höner zu Siederdissen and Peter F. Stadler

Sarah J. Berkemer
MPI Mathematics in the Sciences
Inselstraße 22, D-04103 Leipzig, Germany
Bioinformatics Group
Department of Computer Science, and Interdisciplinary Center for Bioinformatics
Leipzig University, Härtelstraße 16-18, D-04107 Leipzig, Germany
e-mail: bsarah@bioinf.uni-leipzig.de

Christian Höner zu Siederdissen
Bioinformatics Group
Department of Computer Science, and Interdisciplinary Center for Bioinformatics
Leipzig University, Härtelstraße 16-18, D-04107 Leipzig, Germany
e-mail: choener@bioinf.uni-leipzig.de

Peter F. Stadler
MPI Mathematics in the Sciences
Inselstraße 22, D-04103 Leipzig, Germany
Bioinformatics Group
Department of Computer Science and Interdisciplinary Center for Bioinformatics,
Leipzig University, Härtelstraße 16-18, D-04107 Leipzig, Germany
Competence Center for Scalable Data Services and Solutions Dresden/Leipzig
German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig
Centre for Biotechnology and Biomedicine, and Leipzig Research Center for Civilization
Diseases (LIFE)
Leipzig University, Germany
Facultad de Ciencias
Universidad Nacional de Colombia, Bogotá, Colombia
Institute for Theoretical Chemistry
University of Vienna, Währingerstraße 17, A-1090 Wien, Austria
Center for non-coding RNA in Technology and Health
Copenhagen University, Grønnegårdsvej 3, Frederiksberg C, Denmark
Santa Fe Institute
1399 Hyde Park Rd., Santa Fe, NM 87501 USA
e-mail: studla@bioinf.uni-leipzig.de

	1. Introduction
	2. A Very Brief Review of Sequence Alignments
	3. Formal Definitions of Sequence Alignments
	4. Alignments of Partially Ordered Sets
	5. Composition of Alignments
	6. Blockwise Decompositions
	7. Recursive Construction
	8. Alignments as Relations
	9. Tree Alignments
	10. Alignments of Graphs
	11. Alignments for General Structures
	12. Concluding Remarks
	Acknowledgements
	References

