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Protein-centric methods

Purification of RNA-RBP complexes via target protein

Specific purification methods for protein in vivo
or way to express a tagged version in vitro→ recombinant
protein

Immunoprecipitation (IP) of the protein via specific antibodies

Most common
Quality and specificity of AB has huge impact on reliability

Co-IP’d RNA is reverse transcribed into cDNA

PCR amplification (NOT POSSIBLE WITH PROTEINS!!!)

Detect interaction partners from less starting material

Sequencing
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Protein centric assays
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in vitro assays

RBP in vitro assays A) SELEX and SEQRS, RNAs undergoes binding and amplification rounds, resulting pools
analyzed via sequencing (SELEX) or after each round (SEQRS) B) RNAcompete assays binding affinity of proteins
with designed RNAs on microarray C) RNA Bind-n-Seq sequences protein concentration dependent amounts of
bound RNAs
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SELEX

Systematic Evolution of Ligands by EXponential enrichment

Identification of binding motifs

Randomized RNA oligos incubated with RBP of interest
Followed by reverse transcription (RT) of bound RNAs
cDNA is then PCR amplified and in vitro transcribed
Repeat → enrich high-affinity binding sites
Sequencing

SELEX enriches high-affinity motifs

Functional binding sites with lower affinity?
No quantitative affinity information for sub-optimal motifs

SEQRS pools are sequenced after each selection

Gives some information on sub-optimal motifs
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RNAcompete

Probes binding specificities

Tagged RBP of interest is incubated with
pool of ∼40 nt long RNAs
Designed to represent all 9-mers in a compact way

RNA is incubated in excess

Competition for a limited amount of protein binding sites
Deduct relative affinity from abundance after single-step
selection

Microarray or Sequencing
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RNA-bind’n-seq

Estimate binding affinity

protein of interest is in vitro expressed
Concentration curve of protein incubated with random RNAs
of length 40nt
IP and sequencing

Ratio of protein concentration and bound RNA used to

Determine real dissociation constants (Kd)
Infer simple secondary structure preferences
40nt long enough to preserve basic structures
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Caveats

in vitro→ need to express protein, not natural levels

Complex structure constraints can not be detected
→Oligos too small

RNAcompete oligos are even designed to prevent complex
structures, to represent all single-stranded 9-mers in the most
compact way

Only Bind-n-Seq has the potential to be used for RNA
secondary structure probing
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in vivo assays

RBP in vivo assays A) RIP assays bound RNAs after IP B) CLIP-Seq methods, co-IP of bound RNAs after
UV-crosslinking and identification of targets via NGS C) PAR-CLIP first treats cells with modified U or G nucleoside
analogs for higher crosslinking efficiency
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IP-methods in vivo I RIP

For in vivomethods, native and denaturating purification methods
have to be distinguished

RNA immunoprecipitation (RIP)
Native

Preserves physiological conditions
Native RP and PP complexes during purification

Be aware

Protein can interact with RNAs not present in in vivo context
unspecific interactions with highly abundant RNAs, e. g. rRNAs
can mask specific interactions with low-abundancy targets
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IP-methods in vivo II CLIP

Crosslink and immunoprecipitation (CLIP)
Denaturing

Crosslinking takes a snapshot of current interactions
Prevents RPIs in non-in vivomanner in later steps of
purification
Short wavelength UV light → covalent bonds between
aromatic AA and RNA in close proximity
Without crosslinking proteins with other proteins
AB purification, denatured in sodiumdodecylsulfate (SDS)
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Basic Principle CLIP

11 / 31



12 / 31



13 / 31



CLIP

A bandwidth of experimental designs are available, each with
certain advantages and limitations

Different protocols → different use cases

Main ones currently

iCLIP (individual nucleotide resolution)
PAR-CLIP (PhotoActivatable-Ribinucleoside-enhanced)
eCLIP (enhanced)
CLASH (crosslinking, ligation, and sequencing of hybrids)

For dsRNA

often crosslink poorly
stringent denaturing plus epitope tagging
Maybe RIP/CLASH is better method
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Caveats

PCR can introduce artefacts

→UMI if possible

CLIP-Seq variants are not bias free

certain nt and aa are preferentially crosslinked by UV-light
crosslink efficiency varies between proteins
just as incorporation rate of nt analogs → varies between cell
types, is considered low

PAR-CLIP → bonds at nt analog → tags enriched at locations
repeats of that base

cl only at sites where nt and aromatic side chains in close
proximity → even if nt analog is incorporated, cl only if analog
is close to actual binding site

Conceptual problem if interacting amino-acid side chains not
aromatic → can not be crosslinked → not detectable by CLIP-Seq
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Bioinformatics

No matter which method, output are reads

RIP reads →whole target sequence, unless breaks

CLIP reads → region around/downstream of crosslink

So how would you go one from there?
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How to analyze this?

RIP →what could be target, low resolution

CLIP → info on (exact) site of interaction

RT misreads crosslink, or drops off completely
→WE USE THIS

PAR-CLIP → introduced nucleotide analogs (e. g. thio-uridine)
misinterpreted as guanines by RT →T2C transitions in reads
→ pinpoint interaction sites

iCLIP → amino acid tag at cl causes termination of RT
→ pinpoint interaction site

eCLIP → iCLIP with size matched input → control
background binding
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Challenges

Depending on CLIP technique used (iCLIP, HITS-CLIP,
Par-CLIP etc.), downstream analysis requires specific
algorithms to filter signal from noise

Mutations can be used to identify interaction sites
Transition(rate)s can be used to distinguish signal from noise

CLIP-Seq signal is a qualitative measure for RBP targets with
high resolution

Quantitative measure only for the relative amount of protein
titert by it

Indicates which RNAs are targets and which are not
No quantitative measure of binding strength or affinity
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Analysis

CLIP-Seq peak finding and normalization A) Regions with enriched signal (crosslink events) are filtered from
background with peak finder algorithms. B) CLIP-Seq signal of such regions depends on the amount of available
transcript and total signal over transcript as well as transcript abundance can be used for normalization.
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Analysis

Identify true binding sites by filtering spurious and unspecific
binding

Use to identify binding motifs, structures

The latter can then be used for binding site predictions, given
that their quality is good enough and that the protein of
interest has binding preferences
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Defining binding sites (BS) from CLIP-Seq experiments

Major challenge in BS prediction is missing negative control

Without negative control → come up with measure to
distinguish true binding from background binding

Algorithms work on read counts in defined genomic regions or
sequence stretches derived from data directly

Straight forward way to distinguish real binding from noise is
random distribution of reads over defined region (e. g. the
gene body) → calculate the probability for finding the read
density observed in the experiment

P-values for peak regions and enrichment values between
theoretical/experimental signal
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More on this topic

Nr. of tools for peak detection/CLIP analysis is growing

Remaining challenges

Elimination of background from CLIP-Seq experiments
High signal does not automatically indicate strong binding and
vice versa
Some regions tend to show high signal across conditions and
protein of interest → suggests background binding
One might miss important binding sites with low signal due to
low expression of target sites

Adequate experimental quality will always be of the essence for
successful CLIP-Seq analysis
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TOOL YEAR EXPERIMENT FOCUS MAIN ADVANTAGE RECOMMENDED
CASE

Paralyzer 2011 PAR-CLIP Peak detection Exploits T to C mutations
to Improve Signal to noise
ratio

PAR-CLIP data

wavClusteR 2012 PAR-CLIP (BAM format) Noise and false positives
reduction Peak detection

Distinguishes between
non-experimentally and
experimentally induced
transitions

PAR-CLIP data

Piranha 2012 CLIP-seq and RIP-seq
(BED or BAM)

Noise and false positives
reduction Peak detection
CLIP-seq data compari-
son [correction for tran-
script abundance]

Corrects the reads depen-
dence on transcript abun-
dance

CLIP-seq and Tran-
script abundance
data

mCarts 2013 CLIP-seq Sites prediction on differ-
ent samples

Considers accessibility
in local RNA secondary
structures and cross-
species conservation

RBP motif

PIPE-CLIP 2014 CLIP-seq (SAM or BAM) Noise and false positives
reduction Statistical as-
sessment Peak detection

Provides a significance
level for each identified
candidate binding site

HITS-CLIP, iCLIP

GraphProt 2014 CLIP-seq and RNAcom-
pete

Peak detection Sites pre-
diction on different sam-
ples

Detects RBP motif sec-
ondary structure common
characteristics. It esti-
mates binding affinities

RBP motifs that
are NOT located
within single-
stranded regions

CLIPper 2016 eCLIP-seq Peak detection from
eCLIP data

Models background bind-
ing

eCLIP

23 / 31



Binding motif prediction

Search for preferred binding motif is routine task → identification
of a motif non-trivial

Motif finding → the problem of discovering motifs without
prior knowledge of how the motifs look

Given set of sequences, find subsequences that occur more
often than expected → over-represented

Motif of interest will occur in many input sequences and can
in principle be found by aligning the input sequences and
searching for conserved regions

Motifs do not have to be fully conserved, and they can even
consists of sub-motifs themselves, or at least show some
variability in their nucleotide content
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PWM

Alignments can be used to generate Position Weight Matrices
(PWM) → assign each position in a sequence a probability for
containing a certain nucleotide

From such a PWM, the frequency of a given motif in the
input can be computed and compared to the background
frequency (e. g. number of motifs in genes), such that a score
for over-representation is derived

MEME is the most widely used algorithm for this task
→Expectation maximization (EM) algorithm to find the most
over-represented motifs in a set of sequences
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Is structure important?

Overview of RNA secondary structure elements Loop types that occur in RNA molecules and are distinguished by
in silico structure prediction algorithms due to their differing thermodynamic effects. One distinguishes stem loops,

hairpin loops, multi loops, bulges, interior loops and exterior loops.
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Improve motif prediction

RBP binding motifs can be predicted by DNA motif finders

Most RBPs are thought to prefer single stranded RNA
(ssRNA) regions for interaction

So what can we do to improve motif prediction?

Include accessibility of binding sites
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Accessibility

RNA must be accessible for most RBPs to interact →most
likely secondary structure is less important than accessibility
derived from ensemble of structures

McCaskill algorithm → exhaustive calculation of bp
probabilities from Bolzmann ensemble of structures in thermal
equilibrium

Be aware → such predictions are made on local rather than
global scale → they are very context-sensitive

When analyzing e. g.CLIP-Seq target sites, length of the
surrounding region one selects for folding has strong impact
on the results
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Algorithm Input Type of motif generated Considers secondary structure?

MEME
Positive (and optionally,
negative) sequences

PWM No

PhyloGibbs
Positive (and optionally,
negative) sequences

PWM No

cERMIT Rank ordered sequences PWM No

DRIMUST Rank ordered sequences
IUPAC motif, possibly
gapped

No

StructuRED
Positive and negative se-
quences

PWM in a hairpin loop
Yes, considers possible hairpin loops up
to 7 bases with at least 3 paired bases

TEISER
Sequences and scores
(e.g., stability scores)

PWM in a hairpin loop
Yes, considers possible hairpin loops
with stems 4-7 bases long and loop
sizes of 4-9 bases

RNAcontext
Sequences and affinity
scores

PWM with structural con-
text scores

Yes, learns the preferred structural con-
text of each base in a motif

GraphProt
Positive and negative se-
quences

graph-based sequence and
structure motifs, can be
visualized with logos

Yes, models RNA structure using a
graph-based encoding

CMfinder Positive sequences structured sequence
Yes, SCFG-based, examines the most
stable structures in the input

RNApromo Positive sequences structured sequence
Yes, SCFG-based, optimizes a motif
from an initial set of substructures gen-
erated from the input

#ATS
Positive and negative se-
quences

IUPAC
Yes, scores candidate binding sites by
accessibility

MEMERIS
Positive and negative se-
quences

PWM
Yes, uses accessibility as prior knowl-
edge to guide motif finding toward
single-stranded regions
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Take home

Secondary structure influences binding potential
→ binding influences structure ensemble

Inaccessible BS require energy to unfold
→ binder can prevent structures from forming or provide the
energy needed to form it

in vivoRNA is in (constant) contact with binders
(e. g. proteins, miRNAs, ligands, etc.)
→ all influence and are influenced by structure ensemble

in silicomethods to predict structures, also under constraints
of interaction

There is not THE right way to analyze

Always depends on your data and the experimental context
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