Interaktionen und Modifikationen von RNAs und Proteinen RNA-Protein Interactions II (Modul 10-202-2208; Spezialvorlesung)

Jörg Fallmann

Institute for Bioinformatics University of Leipzig

11.05.2018

Protein-centric methods

Purification of RNA-RBP complexes via target protein Specific purification methods for protein *in vivo* or way to express a tagged version *in vitro* \rightarrow recombinant protein

Immunoprecipitation (IP) of the protein via specific antibodies Most common Quality and specificity of AB has huge impact on reliability

Co-IP'd RNA is reverse transcribed into cDNA

PCR amplification (NOT POSSIBLE WITH PROTEINS!!!) Detect interaction partners from less starting material

Sequencing

Protein centric assays

in vitro assays

RBP in vitro assays A) SELEX and SEQRS, RNAs undergoes binding and amplification rounds, resulting pools analyzed via sequencing (SELEX) or after each round (SEQRS) B) RNAcompete assays binding affinity of proteins with designed RNAs on microarray C) RNA Bind-n-Seq sequences protein concentration dependent amounts of bound RNAs

SELEX

Systematic Evolution of Ligands by EXponential enrichment Identification of binding motifs

Randomized RNA oligos incubated with RBP of interest Followed by reverse transcription (RT) of bound RNAs cDNA is then PCR amplified and in vitro transcribed Repeat \rightarrow enrich high-affinity binding sites Sequencing

SELEX enriches high-affinity motifs Functional binding sites with lower affinity? No quantitative affinity information for sub-optimal motifs SEQRS pools are sequenced after each selection Gives some information on sub-optimal motifs

RNAcompete

Probes binding specificities

Tagged RBP of interest is incubated with pool of \sim 40 nt long RNAs Designed to represent all 9-mers in a compact way

RNA is incubated in excess

Competition for a limited amount of protein binding sites Deduct relative affinity from abundance after single-step selection

Microarray or Sequencing

RNA-bind'n-seq

Estimate binding affinity

protein of interest is *in vitro* expressed Concentration curve of protein incubated with random RNAs of length 40nt IP and sequencing

Ratio of protein concentration and bound RNA used to Determine real dissociation constants (K_d) Infer simple secondary structure preferences 40nt long enough to preserve basic structures

 $\textit{in vitro} \rightarrow \text{need}$ to express protein, not natural levels

 $\textit{in vitro} \rightarrow \text{need}$ to express protein, not natural levels

Complex structure constraints can not be detected \rightarrow Oligos too small

in vitro \rightarrow need to express protein, not natural levels

Complex structure constraints can not be detected \rightarrow Oligos too small

RNAcompete oligos are even designed to prevent complex structures, to represent all single-stranded 9-mers in the most compact way

in vitro \rightarrow need to express protein, not natural levels

Complex structure constraints can not be detected \rightarrow Oligos too small

RNAcompete oligos are even designed to prevent complex structures, to represent all single-stranded 9-mers in the most compact way

Only Bind-n-Seq has the potential to be used for RNA secondary structure probing

in vivo assays

RBP in vivo assays A) RIP assays bound RNAs after IP B) CLIP-Seq methods, co-IP of bound RNAs after UV-crosslinking and identification of targets via NGS C) PAR-CLIP first treats cells with modified U or G nucleoside analogs for higher crosslinking efficiency

IP-methods in vivol RIP

For *in vivo* methods, native and denaturating purification methods have to be distinguished

IP-methods in vivol RIP

For *in vivo* methods, native and denaturating purification methods have to be distinguished

RNA immunoprecipitation (RIP)

Native

Preserves physiological conditions Native RP and PP complexes during purification

IP-methods in vivol RIP

For *in vivo* methods, native and denaturating purification methods have to be distinguished

RNA immunoprecipitation (RIP)

Native

Preserves physiological conditions Native RP and PP complexes during purification

Be aware

Protein can interact with RNAs not present in *in vivo* context unspecific interactions with highly abundant RNAs, *e. g.* rRNAs can mask specific interactions with low-abundancy targets

IP-methods in vivo II CLIP

Crosslink and immunoprecipitation (CLIP)

Denaturing

Crosslinking takes a snapshot of current interactions Prevents RPIs in non-*in vivo* manner in later steps of purification

Short wavelength UV light \rightarrow covalent bonds between aromatic AA and RNA in close proximity

Without crosslinking proteins with other proteins

AB purification, denatured in sodiumdodecylsulfate (SDS)

Basic Principle CLIP

Figure 1: Basic principle of CLIP. Covalent bonds are formed between proximal proteins and RNA upon exposure to ultraviolet light. These bonds only occur at the sites of direct contact and preserve RNA-protein interactions.

CLIP and related protocols		
RIP	RNA immunoprecipitation	Lerner and Steitz, 1979
CLIP	(UV) Crosslinking and immunoprecipitation	Ule et al., 2003, 2005
Fractionation CLIP	CUP from nucleus, cytosol. and polysomes	Sanford et al., 2008
HITS-CUP	High-throughput sequencing of RNA isolated by CLIP	Licatalosi et al., 2008; Chi et al., 2009
CLIP-seq	CUP coupled with high-throughput sequencing	Yeo et al., 2009
CRAC	UV crosslinking and analysis of cDNAs	Granneman et al., 2009
PAR-CLIP	Photoactivable ribonucleoside-enhanced CLIP	Hafner et al., 2010; Garzia et al., 2017
ICLIP	Individual-nucleotide resolution CLIP	König et al., 2010
CLAP	Crosslinking and affinity purification	Wang et al., 2010
4SU-ICLIP	4SU-mediated crosslinking followed by iCLIP	Huppertz et al., 2014
urea-iCLIP	iCLIP with denaturing purification	Huppertz et al., 2014
BrdU CLIP	Bromodeoxyuridine UV CLIP	Weyn-Vanhentenryck et al., 2014
FAST-ICLIP	Fully automated and standardized iCLIP	Flynn et al., 2015
irCLIP	Infrared-CLIP	Zarnegar et al., 2016
eCLIP	Enhanced CLIP	Van Nostrand et al., 2016
seCLIP	Single-end eCLIP	Van Nostrand et al., 2017c
uvCLAP	UV crosslinking and affinity purification	Aktaş et al., 2017
FLASH	Fast ligation of RNA after some sort of affinity purification for high-throughput sequencing	Aktaş et al., 2017
Fr-iCLIP	Fractionation iCUP	Brugiolo et al., 2017
sCLIP	Simplified CLIP	Kargapolova et al., 2017
dCLIP	Denaturing CLIP	Rosenberg et al., 2017
Further applications of 0	CLIP	
CLASH	Crosslinking, ligation, and sequencing of hybrids	Kudla et al., 2011
hiCLIP	RNA hybrid and iCLIP	Sugimoto et al., 2015
PAPERCLIP	Poly(A) binding protein-mediated mRNA 3' end retrieval by CLIP	Hwang et al., 2016
cTag-PAPERCLIP	"Conditionally" tagged PAPERCLIP	Hwang et al., 2017
m5C-miCLIP	Cytosine-5 methylation iCLIP	Hussain et al., 2013
m6A-miCLIP	N6-methyladenosine iCLIP	Linder et al., 2015

Figure 1. The Core Steps of iCLIP and Other Variants of CLIP

The majority of currently available CLIP protocols (18 out of 28; Table S1) amplify truncated cDNAs to identify the protein-RNA crosslink sites. Therefore, this schematic follows the core steps of ICLIP, a variant that was developed to amplify truncated cDNAs. The structure of RNA fragments, cDNA inserts, and sequenced reads is marked along with color-coded adapters, unjeure molecular identifiers (UMIs), experimental barcodes, and primers. The adapters are named as SeqRY and SeqFw according to their conventional orientations relative to the final sequenced reads. Where indicated, variations introduced by other CLIP protocols are illustrated.

CLIP

A bandwidth of experimental designs are available, each with certain advantages and limitations

 $\mathsf{Different}\ \mathsf{protocols}\ \to \mathsf{different}\ \mathsf{use}\ \mathsf{cases}$

CLIP

A bandwidth of experimental designs are available, each with certain advantages and limitations

 $\mathsf{Different} \ \mathsf{protocols} \to \mathsf{different} \ \mathsf{use} \ \mathsf{cases}$

Main ones currently

iCLIP (individual nucleotide resolution) PAR-CLIP (PhotoActivatable-Ribinucleoside-enhanced) eCLIP (enhanced) CLASH (crosslinking, ligation, and sequencing of hybrids)

CLIP

A bandwidth of experimental designs are available, each with certain advantages and limitations

 $\mathsf{Different} \ \mathsf{protocols} \to \mathsf{different} \ \mathsf{use} \ \mathsf{cases}$

Main ones currently

iCLIP (individual nucleotide resolution)

PAR-CLIP (PhotoActivatable-Ribinucleoside-enhanced) eCLIP (enhanced)

CLASH (crosslinking, ligation, and sequencing of hybrids)

For dsRNA

often crosslink poorly stringent denaturing plus epitope tagging Maybe RIP/CLASH is better method

PCR can introduce artefacts

PCR can introduce artefacts \rightarrow UMI if possible

PCR can introduce artefacts \rightarrow UMI if possible

CLIP-Seq variants are not bias free

PCR can introduce artefacts \rightarrow UMI if possible

CLIP-Seq variants are not bias free

certain nt and aa are preferentially crosslinked by UV-light crosslink efficiency varies between proteins just as incorporation rate of nt analogs \rightarrow varies between cell types, is considered low

PCR can introduce artefacts \rightarrow UMI if possible

CLIP-Seq variants are not bias free

certain nt and aa are preferentially crosslinked by UV-light crosslink efficiency varies between proteins just as incorporation rate of nt analogs \rightarrow varies between cell types, is considered low

 $\mathsf{PAR}\text{-}\mathsf{CLIP}\to\mathsf{bonds}$ at nt analog $\to\mathsf{tags}$ enriched at locations repeats of that base

PCR can introduce artefacts \rightarrow UMI if possible

CLIP-Seq variants are not bias free

certain nt and aa are preferentially crosslinked by UV-light crosslink efficiency varies between proteins just as incorporation rate of nt analogs \rightarrow varies between cell types, is considered low

 $\mathsf{PAR}\text{-}\mathsf{CLIP}\to\mathsf{bonds}$ at nt analog $\to\mathsf{tags}$ enriched at locations repeats of that base

cl only at sites where nt and aromatic side chains in close proximity \rightarrow even if nt analog is incorporated, cl only if analog is close to actual binding site

PCR can introduce artefacts \rightarrow UMI if possible

CLIP-Seq variants are not bias free

certain nt and aa are preferentially crosslinked by UV-light crosslink efficiency varies between proteins just as incorporation rate of nt analogs \rightarrow varies between cell types, is considered low

 $\mathsf{PAR}\text{-}\mathsf{CLIP}\to\mathsf{bonds}$ at nt analog $\to\mathsf{tags}$ enriched at locations repeats of that base

cl only at sites where nt and aromatic side chains in close proximity \rightarrow even if nt analog is incorporated, cl only if analog is close to actual binding site

Conceptual problem if interacting amino-acid side chains not aromatic \rightarrow can not be crosslinked \rightarrow not detectable by CLIP-Seq

No matter which method, output are reads

No matter which method, output are reads

 $\label{eq:RIP} \mbox{RIP reads} \rightarrow \mbox{whole target sequence, unless breaks} \\ \mbox{CLIP reads} \rightarrow \mbox{region around/downstream of crosslink} \\ \mbox{around} \mbox{a$

No matter which method, output are reads

 $\label{eq:RIP} \mbox{RIP reads} \rightarrow \mbox{whole target sequence, unless breaks} \\ \mbox{CLIP reads} \rightarrow \mbox{region around/downstream of crosslink} \\ \mbox{around} \mbox{a$

So how would you go one from there?

 $\mathsf{RIP} \to \mathsf{what}$ could be target, low resolution $\mathsf{CLIP} \to \mathsf{info}$ on (exact) site of interaction

 $\mathsf{RIP} \to \mathsf{what}$ could be target, low resolution $\mathsf{CLIP} \to \mathsf{info}$ on (exact) site of interaction

RT misreads crosslink, or drops off completely \rightarrow WE USE THIS

 $\mathsf{RIP} \to \mathsf{what}$ could be target, low resolution $\mathsf{CLIP} \to \mathsf{info}$ on (exact) site of interaction

RT misreads crosslink, or drops off completely \rightarrow WE USE THIS

 $\begin{array}{l} \mathsf{PAR-CLIP} \rightarrow \mathsf{introduced} \ \mathsf{nucleotide} \ \mathsf{analogs} \ (\textit{e. g. thio-uridine}) \\ \mathsf{misinterpreted} \ \mathsf{as} \ \mathsf{guanines} \ \mathsf{by} \ \mathsf{RT} \rightarrow \mathsf{T2C} \ \mathsf{transitions} \ \mathsf{in} \ \mathsf{reads} \\ \rightarrow \mathsf{pinpoint} \ \mathsf{interaction} \ \mathsf{sites} \end{array}$
How to analyze this?

 $\mathsf{RIP} \to \mathsf{what}$ could be target, low resolution $\mathsf{CLIP} \to \mathsf{info}$ on (exact) site of interaction

RT misreads crosslink, or drops off completely \rightarrow WE USE THIS

 $\begin{array}{l} \mathsf{PAR-CLIP} \rightarrow \mathsf{introduced} \ \mathsf{nucleotide} \ \mathsf{analogs} \ (\textit{e. g. thio-uridine}) \\ \mathsf{misinterpreted} \ \mathsf{as} \ \mathsf{guanines} \ \mathsf{by} \ \mathsf{RT} \rightarrow \mathsf{T2C} \ \mathsf{transitions} \ \mathsf{in} \ \mathsf{reads} \\ \rightarrow \mathsf{pinpoint} \ \mathsf{interaction} \ \mathsf{sites} \end{array}$

iCLIP \rightarrow amino acid tag at cl causes termination of RT \rightarrow pinpoint interaction site

How to analyze this?

 $\mathsf{RIP} \to \mathsf{what}$ could be target, low resolution $\mathsf{CLIP} \to \mathsf{info}$ on (exact) site of interaction

RT misreads crosslink, or drops off completely \rightarrow WE USE THIS

 $\begin{array}{l} \mathsf{PAR-CLIP} \rightarrow \mathsf{introduced} \ \mathsf{nucleotide} \ \mathsf{analogs} \ (\textit{e. g. thio-uridine}) \\ \mathsf{misinterpreted} \ \mathsf{as} \ \mathsf{guanines} \ \mathsf{by} \ \mathsf{RT} \rightarrow \mathsf{T2C} \ \mathsf{transitions} \ \mathsf{in} \ \mathsf{reads} \\ \rightarrow \mathsf{pinpoint} \ \mathsf{interaction} \ \mathsf{sites} \end{array}$

iCLIP \rightarrow amino acid tag at cl causes termination of RT \rightarrow pinpoint interaction site

 $eCLIP \rightarrow iCLIP$ with size matched input $\rightarrow control$ background binding

Depending on CLIP technique used (iCLIP, HITS-CLIP, Par-CLIP etc.), downstream analysis requires specific algorithms to filter signal from noise

Depending on CLIP technique used (iCLIP, HITS-CLIP, Par-CLIP etc.), downstream analysis requires specific algorithms to filter signal from noise

Mutations can be used to identify interaction sites Transition(rate)s can be used to distinguish signal from noise

Depending on CLIP technique used (iCLIP, HITS-CLIP, Par-CLIP etc.), downstream analysis requires specific algorithms to filter signal from noise

Mutations can be used to identify interaction sites Transition(rate)s can be used to distinguish signal from noise

CLIP-Seq signal is a qualitative measure for RBP targets with high resolution

Depending on CLIP technique used (iCLIP, HITS-CLIP, Par-CLIP etc.), downstream analysis requires specific algorithms to filter signal from noise

Mutations can be used to identify interaction sites Transition(rate)s can be used to distinguish signal from noise

CLIP-Seq signal is a qualitative measure for RBP targets with high resolution

Quantitative measure only for the relative amount of protein titert by it

Indicates which RNAs are targets and which are not No quantitative measure of binding strength or affinity

Analysis

CLIP-Seq peak finding and normalization A) Regions with enriched signal (crosslink events) are filtered from background with peak finder algorithms. B) CLIP-Seq signal of such regions depends on the amount of available transcript and total signal over transcript as well as transcript abundance can be used for normalization.

Identify true binding sites by filtering spurious and unspecific binding

Identify true binding sites by filtering spurious and unspecific binding

Use to identify binding motifs, structures

Analysis

Identify true binding sites by filtering spurious and unspecific binding

Use to identify binding motifs, structures

The latter can then be used for binding site predictions, given that their quality is good enough and that the protein of interest has binding preferences

Major challenge in BS prediction is missing negative control

Major challenge in BS prediction is missing negative control Without negative control \rightarrow come up with measure to distinguish true binding from background binding

Major challenge in BS prediction is missing negative control Without negative control \rightarrow come up with measure to distinguish true binding from background binding Algorithms work on read counts in defined genomic regions or sequence stretches derived from data directly

Major challenge in BS prediction is missing negative control Without negative control \rightarrow come up with measure to distinguish true binding from background binding Algorithms work on read counts in defined genomic regions or sequence stretches derived from data directly

Straight forward way to distinguish real binding from noise is random distribution of reads over defined region (e. g. the gene body) \rightarrow calculate the probability for finding the read density observed in the experiment

Major challenge in BS prediction is missing negative control Without negative control \rightarrow come up with measure to distinguish true binding from background binding Algorithms work on read counts in defined genomic regions or sequence stretches derived from data directly

Straight forward way to distinguish real binding from noise is random distribution of reads over defined region (*e. g.* the gene body) \rightarrow calculate the probability for finding the read density observed in the experiment

P-values for peak regions and enrichment values between theoretical/experimental signal

More on this topic

 $\ensuremath{\mathsf{Nr}}$. of tools for peak detection/CLIP analysis is growing Remaining challenges

Elimination of background from CLIP-Seq experiments High signal does not automatically indicate strong binding and vice versa

Some regions tend to show high signal across conditions and protein of interest \rightarrow suggests background binding One might miss important binding sites with low signal due to low expression of target sites

Adequate experimental quality will always be of the essence for successful CLIP-Seq analysis

TOOL	YEAR	EXPERIMENT	FOCUS	MAIN ADVANTAGE	RECOMMENDED CASE
Paralyzer	2011	PAR-CLIP	Peak detection	Exploits T to C mutations to Improve Signal to noise ratio	PAR-CLIP data
wavClusteR	2012	PAR-CLIP (BAM format)	Noise and false positives reduction Peak detection	Distinguishes between non-experimentally and experimentally induced transitions	PAR-CLIP data
Piranha	2012	CLIP-seq and RIP-seq (BED or BAM)	Noise and false positives reduction Peak detection CLIP-seq data compari- son [correction for tran- script abundance]	Corrects the reads depen- dence on transcript abun- dance	CLIP-seq and Tran- script abundance data
mCarts	2013	CLIP-seq	Sites prediction on differ- ent samples	Considers accessibility in local RNA secondary structures and cross- species conservation	RBP motif
PIPE-CLIP	2014	CLIP-seq (SAM or BAM)	Noise and false positives reduction Statistical as- sessment Peak detection	Provides a significance level for each identified candidate binding site	HITS-CLIP, iCLIP
GraphProt	2014	CLIP-seq and RNAcom- pete	Peak detection Sites pre- diction on different sam- ples	Detects RBP motif sec- ondary structure common characteristics. It esti- mates binding affinities	RBP motifs that are NOT located within single- stranded regions
CLIPper	2016	eCLIP-seq	Peak detection from eCLIP data	Models background bind- ing	eCLIP

Search for preferred binding motif is routine task \rightarrow identification of a motif non-trivial

Search for preferred binding motif is routine task \rightarrow identification of a motif non-trivial

Motif finding \rightarrow the problem of discovering motifs without prior knowledge of how the motifs look

Search for preferred binding motif is routine task \rightarrow identification of a motif non-trivial

Motif finding \rightarrow the problem of discovering motifs without prior knowledge of how the motifs look

Given set of sequences, find subsequences that occur more often than expected \rightarrow over-represented

Search for preferred binding motif is routine task \rightarrow identification of a motif non-trivial

Motif finding \rightarrow the problem of discovering motifs without prior knowledge of how the motifs look

Given set of sequences, find subsequences that occur more often than expected \rightarrow over-represented

Motif of interest will occur in many input sequences and can in principle be found by aligning the input sequences and searching for conserved regions

Search for preferred binding motif is routine task \rightarrow identification of a motif non-trivial

Motif finding \rightarrow the problem of discovering motifs without prior knowledge of how the motifs look

Given set of sequences, find subsequences that occur more often than expected \rightarrow over-represented

Motif of interest will occur in many input sequences and can in principle be found by aligning the input sequences and searching for conserved regions

Motifs do not have to be fully conserved, and they can even consists of sub-motifs themselves, or at least show some variability in their nucleotide content

PWM

Alignments can be used to generate Position Weight Matrices (PWM) \rightarrow assign each position in a sequence a probability for containing a certain nucleotide

PWM

Alignments can be used to generate Position Weight Matrices (PWM) \rightarrow assign each position in a sequence a probability for containing a certain nucleotide

From such a PWM, the frequency of a given motif in the input can be computed and compared to the background frequency (*e. g.* number of motifs in genes), such that a score for over-representation is derived

PWM

Alignments can be used to generate Position Weight Matrices (PWM) \rightarrow assign each position in a sequence a probability for containing a certain nucleotide

From such a PWM, the frequency of a given motif in the input can be computed and compared to the background frequency (*e. g.* number of motifs in genes), such that a score for over-representation is derived

MEME is the most widely used algorithm for this task \rightarrow Expectation maximization (EM) algorithm to find the most over-represented motifs in a set of sequences

Is structure important?

Overview of RNA secondary structure elements Loop types that occur in RNA molecules and are distinguished by insilicostructure prediction algorithms due to their differing thermodynamic effects. One distinguishes stem loops, hairpin loops, multi loops, bulges, interior loops and exterior loops. Improve motif prediction

RBP binding motifs can be predicted by DNA motif finders

RBP binding motifs can be predicted by DNA motif finders Most RBPs are thought to prefer single stranded RNA (ssRNA) regions for interaction RBP binding motifs can be predicted by DNA motif finders Most RBPs are thought to prefer single stranded RNA (ssRNA) regions for interaction

So what can we do to improve motif prediction?

RBP binding motifs can be predicted by DNA motif finders Most RBPs are thought to prefer single stranded RNA (ssRNA) regions for interaction So what can we do to improve motif prediction?

Include accessibility of binding sites

Accessibility

RNA must be accessible for most RBPs to interact \rightarrow most likely secondary structure is less important than accessibility derived from ensemble of structures

Accessibility

RNA must be accessible for most RBPs to interact \rightarrow most likely secondary structure is less important than accessibility derived from ensemble of structures

McCaskill algorithm \rightarrow exhaustive calculation of bp probabilities from Bolzmann ensemble of structures in thermal equilibrium

Accessibility

RNA must be accessible for most RBPs to interact \rightarrow most likely secondary structure is less important than accessibility derived from ensemble of structures

 $\label{eq:mcCaskill algorithm \to exhaustive calculation of bp probabilities from Bolzmann ensemble of structures in thermal equilibrium$

Be aware \to such predictions are made on local rather than global scale \to they are very context-sensitive

When analyzing *e. g.* CLIP-Seq target sites, length of the surrounding region one selects for folding has strong impact on the results

Algorithm	Input	Type of motif generated	Considers secondary structure?
MEME	Positive (and optionally, negative) sequences	PWM	No
PhyloGibbs	Positive (and optionally, negative) sequences	PWM	No
cERMIT	Rank ordered sequences	PWM	No
DRIMUST	Rank ordered sequences	IUPAC motif, possibly gapped	No
StructuRED	Positive and negative se- quences	PWM in a hairpin loop	Yes, considers possible hairpin loops up to 7 bases with at least 3 paired bases
TEISER	Sequences and scores (e.g., stability scores)	PWM in a hairpin loop	Yes, considers possible hairpin loops with stems 4-7 bases long and loop sizes of 4-9 bases
RNAcontext	Sequences and affinity scores	PWM with structural con- text scores	Yes, learns the preferred structural con- text of each base in a motif
GraphProt	Positive and negative se- quences	graph-based sequence and structure motifs, can be visualized with logos	Yes, models RNA structure using a graph-based encoding
CMfinder	Positive sequences	structured sequence	Yes, SCFG-based, examines the most stable structures in the input
RNApromo	Positive sequences	structured sequence	Yes, SCFG-based, optimizes a motif from an initial set of substructures gen- erated from the input
#ATS	Positive and negative se- quences	IUPAC	Yes, scores candidate binding sites by accessibility
MEMERIS	Positive and negative se- quences	PWM	Yes, uses accessibility as prior knowl- edge to guide motif finding toward single-stranded regions

Take home

Secondary structure influences binding potential \rightarrow binding influences structure ensemble Inaccessible BS require energy to unfold \rightarrow binder can prevent structures from forming or provide the energy needed to form it

in vivo RNA is in (constant) contact with binders (*e. g.* proteins, miRNAs, ligands, etc.)

 $\rightarrow\, \text{all}$ influence and are influenced by structure ensemble

in silico methods to predict structures, also under constraints of interaction

There is not THE right way to analyze

Always depends on your data and the experimental context

Interesting reads

Flora C.Y. Lee and Jernej Ule (Feb. 2018). "Advances in CLIP Technologies for Studies of Protein-RNA Interactions". en. In: *Molecular Cell* 69.3, pp. 354–369. ISSN: 10972765. DOI: 10.1016/j.molcel.2018.01.005. URL: http://likinghub.elsevier.com/retrieve/pii/S1097276518300054 (visited on 04/20/2018)

Matthias W. Hentze et al. (Jan. 2018). "A brave new world of RNA-binding proteins". en. In: Nature Reviews Molecular Cell Biology 19.5, pp. 327-341. ISSN: 1471-0072, 1471-0080. DOI: 10.1038/nrm.2017.130. URL: http://www.nature.com/doifinder/10.1038/nrm.2017.130 (visited on 05/07/2018)

K. B. Cook et al. (Jan. 2015). "High-throughput characterization of protein-RNA interactions". en. In: Briefings in Functional Genomics 14.1, pp. 74-89. ISSN: 2041-2649, 2041-2657. DOI: 10.1093/bfgp/elu047. URL: http://bfgp.oxfordjournals.org/cgi/doi/10.1093/bfgp/elu047 (visited on 11/23/2015)

Julian König et al. (2011). "Protein-RNA interactions: new genomic technologies and perspectives". In: Nature Reviews Genetics 13.February, pp. 77-83. ISSN: 1471-0056. DOI: 10.1038/nrg3141. URL: http: //www.nature.com/nrg/journal/v13/n2/abs/nrg3141. htmlhttp://discovery.ucl.ac.uk/1344586/

Colleen A. McHugh et al. (2014). "Methods for comprehensive experimental identification of RNA-protein interactions". In: Genome Biol 15, p. 203. URL: http://www.biomedcentral.com/content/pdf/zb4152.pdf (visited on 11/23/2015)

Stefanie Gerstberger et al. (Nov. 2014). "A census of human RNA-binding proteins". In: Nature Reviews Genetics 15.12, pp. 829-845. ISSN: 1471-0056, 1471-0064. DOI: 10.1038/nrg3813. URL: http://www.nature.com/doifinder/10.1038/nrg3813 (visited on 11/24/2015)