Interaktionen und Modifikation von RNA und Proteinen

Prof. Sonja Prohaska

Computational EvoDevo Universität Leipzig

SS 2018

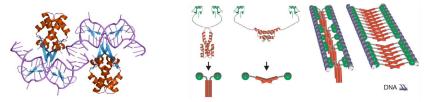
DNA is "never" naked in a cell

general binder

DNA is usually in association with proteins. In all domains of life there are small, basic **chromatin associated proteins (ChAP)** attached to the DNA forming higher order structures. Their function is to prevent DNA from agglutination, ensuring stability and flexibility, aid structure formation ("packaging") and engage in gene regulation.

specific binder

Sequence-specific **transcription factors** associate with specific binding sites. There functions is commonly gene regulation.


Proteins that are general binders of DNA

eukaryots

- the DNA-protein complex: chromatin
- major chromatin associating proteins (ChAP): histones

bacteria

- the DNA-protein complex: nucleoid
- nucleoid associating proteins (NAP):
 HU introduces negative supercoiling
 H-NS regulates gene expression

HU, core (red), arms (blue)

histone-like nucleoid-structuring protein (H-NS)

general vs. specific binder

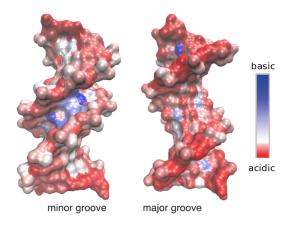
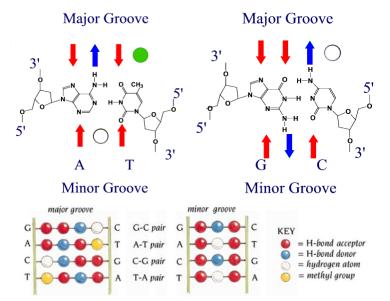
general binder

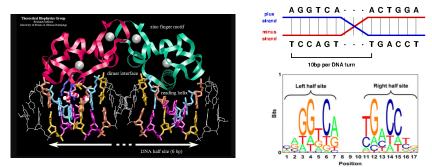
- small basic proteins
- contact negatively charged DNA backbone
- e.g. HU, Alba, histones (double stranded)
- e.g. SSB (single stranded)
- bind everywhere, often bend the DNA

specific binder

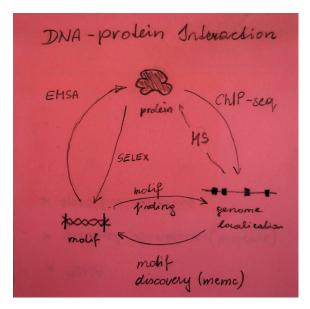
- large protein with DNA-binding domain(s) (DBD)
- contact major groove of DNA
- DBDs: e.g. HTH (helix-turn-helix), zinc finger, leucine zipper, helix-loop-helix
- bind to specific sites
- sequence-dependent

DNA-binding proteins – a molecular view


Fig: Electrostatic potential surface of the DNA. General binders are basic and contact the acidic DNA backbone. Specific binders make contact with the nucleobases in the major and minor groove.

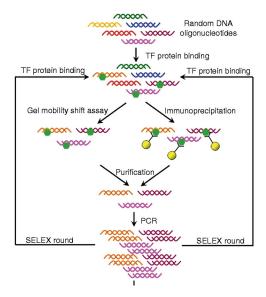
Proteins can distinguish all four nucleobases in the major groove. In the minor groove only AT and GC basepairs can be distinguished.


DNA-binding proteins - a molecular view

Examle: the estrogen receptor dimer

Homodimeric proteins consist of two identical units that are in contact via the dimer interface. Here each dimer makes contact to 6 base pairs in the major groove in a spequence-specific manner. The motif is **palindromic**.

How to study DNA-protein binding?



How to study DNA-protein binding?

Given a protein, which DNA sequence does it bind preferentially? in vitro selection – SELEX

- SELEX (systematic evolution of ligands by exponential enrichment) also known as in-vitro evolution
- a very large oligonucleotide library
 - randomly generated sequences of fixed length
- is exposed to the target protein
- unbound oligos flow through (are removed)
- bound sequences are eluted and amplified by PCR
 - another SELEX round with increased stringency is done or
- the pool of sequences is finally sequenced
- an alignment reveals the motif and its variation

How to study DNA-protein binding?

	BanHI		PstI			
	GGATCC		CCTGCAGG			
1,	G	TGAGTCA	CCATCCCGGTTGGC			
2.	GACAGGTC	TGAGTCA	TATGCACG			
з,	GAGCAA	TGAGTCA	TCGTGTCGCG			
4,	GA	TGAGTCA	CAGGCAACGGGCAC			
5,	А	TGACTCA	TTGAGCGACTTACCG			
7,	CTGTATTACGACACAA	TGAGTCA				
8,	ATAACGAGTGGGGA	TGACTCA	TT			
9,	-ATTCTCGCCTTTCTG	TGAGTCA	т			
11,	АААААА	TGAGTCA	TCCGAGCT			
12,	AT	TGACTCA	TACGCAGCTAGACT			
13,	GAGTGTAGA	TGACTCA	TGGACTG			
14,	A	TGAGTCA	TCGCTAGTCCATGGG			
15,	GTGTCCTTCGGGA	TGAGTCA	TGC			
16,	GTCACGGGGCC	TGACTCA	TAGAA			
18,	G	TGAGTCA	CGGAAATTGTTGG			
19,	GCATTATGGAG	TGACTCA	TCCTT			
20,	GAAGCATTTG	TGAGTCA	TCGCT			
21,	TCGGTAGTCGGTA	TGAGTCA	TT			
22,	CGG	TGACTCA	CGTAGAGGTAACC			
25,	А	TTAGTCA	TCAGAGGGTGGCGAC			
26,	AAATTTACATGCGA	TGAGTCA	та			
27,	AGCCGCGGTGAGAA	TGAGTCA	TA			
28,	TGGCCCCGGGTCTC	TGACTCA	GC			
29,	AACGAGACGCGC	TGAGTCA	TCTT			
30,	GCCAGTTGATACTC	TGTGTCA	CGG			
32,	GTAGCTGAGGAG	TGAGTCA	CGCCTG			
33,	GGGG	TGAGTCA	TAAAGATAAATCT			
34,	-CCCGCGTAGGCTCGA	TGAGTCA	A			
35,	TCAGAGTCAGCTTA	TGAGTCA	GG			
36,	CGCTGG	TGACTCA	TCGTGTTCTG			
37,	GCAGGCGCCACGCG	TGACTCA	T			
38,	GTCAGTTTG	TGAGTCA	CTCTACC			
39,	GTATGACGTGGA	TGTGTCA	GAGG			
10,	TGGCCCTA	TGACTCA	TAAGGCAC			
11,	GCCAATGACTTCTC	TGAGTCA	T			
12,	CCGTCATCGCGGGT	TGAGTCA	CT			
13,	GA	TGAGTCA	GGACCGGGGTTGGA			
14,	TACGTG	TGACTCA	TTCACCACCC			
15,	GCCTG	TGACTCA	TCCTGCGCGTA			
16,	GAAATA	TGAGTCA	CGGGACGTCT			
17,	-AGTGTGTGTAAAGGGGGG	TGAGTCA	T			
18,	AG	TGACTCA	CCGACACGTACGT			
19,	TGCGTCGGG	TGAGTCA	GATTGTG			

FIG. 3. GCN4-binding sites.

How to represent a motif?

Given an alignment of *n* motifs of length *l* here the result of the SELEX experiment: n = 43, l = 7

consensus string

most frequent nucleotide per position 5'-TGAGTCA-3'

consensus pattern

all possible nucleotides per position 5'-T(G|T)(A|T)(G|C)TCA-3'

 $K = \{G, T\}, W = \{A, T\}, S = \{G, C\} \rightarrow 5$ '-TKWSTCA-3'

position frequency matrix – PFM

Alphabeth = $\{A, C, G, T\}$, size of Alphabet *a*, matrix $a \times I$

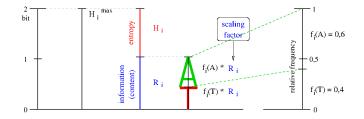
sequence logo bast on the information content (IC)

How to calculate the information content?

The information content (y-axis) is measured in bits. The maximal information depends on the size k of the Alphabet \mathfrak{A} , here $\mathfrak{A} = \{A, C, G, T\}$, $a \in \mathfrak{A}$, and k = 4. The **Shannon entropy** (uncertainty) H_i at position i of the motif is

$$H_i = -\sum_{\mathfrak{A}} f_i(a) \log_2 f_i(a) \tag{1}$$

where $f_i(a)$ is the relative frequency of nucleotide *a* at position *i*. The **information content** R_i at position *i* of the motif is


$$R_i = \log_2(k) - H_i \tag{2}$$

(i.e. the maximal information content minus the uncertainty)

The height $h_i(a)$ of a letter *a* in column *i* is

$$h_i = f_i(a) \times R_i \tag{3}$$

note: $log_2k = log_24 = 2$

... with small-sample size correction small-sample correction e_n is given by

$$e_n = \frac{1}{\ln 2} \times \frac{s-1}{2n} \tag{4}$$

where s is the number of sequences in the alignment. The information content R_i at position i of the motif is then

$$R_i = \log_2(k) - (H_i + e_n) \tag{5}$$

Explain, what does e_n do?

What to do with the motif?

How often would you expect to find a motif m in a sequence M?

- ▶ assume that motif *m* is a string, e.g. 5′-GGCCT-3′
- of motif length I = 5bp
- the sequence M, e.g. the human HoxA cluster,
- has a length of L = 163001 bp
- Alphabet $\mathfrak{A} = \{A, C, G, T\}$
- 1. assume **uniform** nucleotide distribution: f(x) = 0.25
- 2. use **mono**-nucleotide distribution: f(A) = 0.2428, f(C) = 0.2555, f(G) = 0.2552, f(T) = 0.2466
- 3. use **di**-nucleotide distribution: f(AG) = 0.0604, f(GG) = 0.0812, f(GC) = 0.0677f(CC) = 0.0815, f(CT) = 0.0751

Calculations

$$E^{UNI}(m) = f(X)^5 \times (L - (l - 1))$$
 (6)

$$E^{MONO}(m) = (f(G)^2 \times f(C)^2) \times f(T)) \times (L - (l - 1))$$
(7)

$$E^{DI}(m) = \frac{f(GG) \times f(GC) \times f(CC) \times f(CT)}{f(G) \times f(C)^2} \times (L - (I - 1))$$
(8)

Results: $E^{UNI}(m) = 159$; $E^{MONO}(m) = 171$; $E^{DI}(m) = 329$;

Which expectation comes closer to the observation?

Let's assume you apply a word search method to the human hox cluster sequence and find 312 motif sites.

Observed sites: number of matches of motif *m* in *M* is O = 312**Expected sites:** $E^{UNI}(m) = 159$; $E^{MONO}(m) = 171$; $E^{DI}(m) = 329$;

Use the **chi-squared test** (χ^2) to determine whether there is a significant difference between the expected frequency and the observed frequency.

$$\chi^2 = \frac{(O-E)^2}{E}$$

df P	0.995	0.975	0.9	0.5	0.1	0.05	0.025	0.01	0.005
1	.000	.000	0.016	0.455	2.706	3.841	5.024	6.635	7.879
2	0.010	0.051	0.211	1.386	4.605	5.991	7.378	9.210	10.597
3	0.072	0.216	0.584	2.366	6.251	7.815	9.348	11.345	12.838
4	0.207	0.484	1.064	3.357	7.779	9.488	11.143	13.277	14.860
5	0.412	0.831	1.610	4.351	9.236	11.070	12.832	15.086	16.750

Results: $\chi^2(UNI) = 147.226$; $\chi^2(MONO) = 116.263$; $\chi^2(DI) = 0.878$;

Which expectation comes closer to the observation?

Significance levels

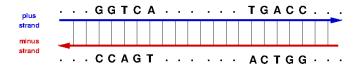
for **one** degree of freedom (df) expected and observed value, *E* and *O*, are significantly different at 5% level (p = 0.05) if $\chi^2 >= 3.841$ at 1% level (p = 0.01) if $\chi^2 >= 6.635$

Conclusion

 $E^{UNI}(m)$ and $E^{MONO}(m)$ are significantly different from O, $E^{DI}(m) = 329$ is not.

Therefore we can conclude that the calculation of E(m) using the di-nucleotide distribution is a good prediction for the **observable** number of sites.

DNA is more than a (plus) strand!


- DNA is double stranded
- the two strands are referred to as plus and minus strand
- the convention is:
- the strand which runs from 5' to 3' from left to right
- ▶ is the top strand (when both strands are displayed) and
- it is also the plus strand (the one displayed if only one strand is displayed)
- the sequence of one strand determines the sequence of the other
- the relation between the two strands is the "reverse complement"

about motifs and sites

- the (binding) motif specifies a (binding) pattern
- ▶ a sequence in the genome matching the motif is a (binding) site

Exercises

- Explain why the expected number of sites E comes closer to the true number of sites O in the sequence M when using the dinucleotide instead of mononucleotide composition.
- How would you need to adapt equations 6 to 8 to account for both DNA strands in the calculation of the expectation value? What if the motif is palindromic, e.g. 'GGTACC'?
- How many different motifs of lenght 5 can be derived from the sequence below?
- How many binding sites can be found with motif 'GGTCA'

