UNIVERSITÄT LEIPZIG

Three-Dimensional Reconstruction and Quantification of Cervical Carcinoma Invasion Fronts from Histological Serial Sections

Ulf-Dietrich Braumann Jens-Peer Kuska[†] Jens Einenkel Lars-Christian Horn Markus Löffler Michael Höckel Interdisciplinary Centre for Bioinformatics Interdisciplinary Centre for Bioinformatics Department of Gynaecology and Obstetrics Institute for Pathology Interdisciplinary Centre for Bioinformatics Department of Gynaecology and Obstetrics

Räumliche Organisation molekularbiologischer Prozesse, 15. Juni 2012

$\times \odot | < < \leftrightarrow > > > 12345678$

Overview

- 1. Introduction
- 2. Tumour Reconstruction
- 3. Tumour Invasion Quantification
- 4. Results
- 5. Conclusions I
- 6. Clinical Applicability?
- 7. Conclusions II
- 8. Advanced Tumour Reconstruction & Analysis

Carcinoma growth

- Malignant growth and invasiveness of cancers:
 - \rightarrow intratumoral and stromal factors
- Shape of the tumor invasion front:
 - \rightarrow accessibility to nutrients, oxygen and growth factors
 - \rightarrow stromal composition, interference with the immune system
- Supposed growth pattern-related prognostic differences or surgical relevance

Carcinoma growth

- Malignant growth and invasiveness of cancers:
 - $\rightarrow\,$ intratumoral and stromal factors
- Shape of the tumor invasion front:
 - \rightarrow accessibility to nutrients, oxygen and growth factors
 - \rightarrow stromal composition, interference with the immune system
- Supposed growth pattern-related prognostic differences or surgical relevance

Carcinoma growth

- Malignant growth and invasiveness of cancers:
 - \rightarrow intratumoral and stromal factors
- Shape of the tumor invasion front:
 - \rightarrow accessibility to nutrients, oxygen and growth factors
 - \rightarrow stromal composition, interference with the immune system
- Supposed growth pattern-related prognostic differences or surgical relevance

Carcinoma growth

- Malignant growth and invasiveness of cancers:
 - \rightarrow intratumoral and stromal factors
- Shape of the tumor invasion front:
 - \rightarrow accessibility to nutrients, oxygen and growth factors
 - \rightarrow stromal composition, interference with the immune system
- Supposed growth pattern-related prognostic differences or surgical relevance

Carcinoma growth

- Malignant growth and invasiveness of cancers:
 - \rightarrow intratumoral and stromal factors
- Shape of the tumor invasion front:
 - ightarrow accessibility to nutrients, oxygen and growth factors
 - \rightarrow stromal composition, interference with the immune system
- Supposed growth pattern-related prognostic differences or surgical relevance

Carcinoma growth

- Malignant growth and invasiveness of cancers:
 - \rightarrow intratumoral and stromal factors
- Shape of the tumor invasion front:
 - \rightarrow accessibility to nutrients, oxygen and growth factors
 - \rightarrow stromal composition, interference with the immune system
- Supposed growth pattern-related prognostic differences or surgical relevance

Morphometric quantification and classification of multicellular systems

Morphometric quantification and classification of multicellular systems

Specific Objective

3-D characterisation of the invasion pattern of squamous epithelial carcinoma of the uterine cervix (supposed prognostic relevance)

Morphometric quantification and classification of multicellular systems

Specific Objective

3-D characterisation of the invasion pattern of squamous epithelial carcinoma of the uterine cervix (supposed prognostic relevance)

Tissue specimen

Morphometric quantification and classification of multicellular systems

Specific Objective

3-D characterisation of the invasion pattern of squamous epithelial carcinoma of the uterine cervix (supposed prognostic relevance)

Tissue specimen

Tumour description

Morphometric quantification and classification of multicellular systems

Specific Objective

3-D characterisation of the invasion pattern of squamous epithelial carcinoma of the uterine cervix (supposed prognostic relevance)

Tissue specimen

Tumour description

Anatomical Overview:

Cervix Specimen embedded in Paraffin Wax:

Material:

$\times \odot \mid < \leftrightarrow \hookrightarrow > > > 12345678$

Squamous Cell Carcinoma of the Uterine Cervix:

"closed"

"finger-like"

"diffuse"

How to algorithmically quantify tumour invasion?
No knowledge about the 3-D invasion front!
Do separated tumour islets exist?

Imaging Modalities:

- macroscopic 3-D techniques (CT, MRI, PET, SPECT, US, ...): \rightarrow too few contrast / spatial resolution
- microscopic 3-D techniques (CLSM, 3-DEM, SFM, ...): \rightarrow too limited FOV / far sub-cellular resolutions
- transmitted light microscopy:

 \rightarrow histological serial sections

Problems with Serial Sections: Slicing Artefacts

- distortions
- slice thickness fluctuations
- damages, fissures, folds

Problems with Serial Sections: Slicing Artefacts

- distortions
- slice thickness fluctuations
- damages, fissures, folds
- Strategy: procedures for
 - tissue reconstruction
 - tumour segmentation
 - tumour invasion quantification

$\times \odot \mid < \leftrightarrow \hookrightarrow > > \mid$ 1 2 3 4 5 6 7 8

2 Tumour Reconstruction

Rigid Registration:

- Rough alignment (rotation, translation)
- Fourier-Mellin Invariant & Phase-Only Matched Filtering

Rigid Registration:

- Rough alignment (rotation, translation)
- Fourier-Mellin Invariant & Phase-Only Matched Filtering

 $r(x,y) = s(x\cos\alpha_0 + y\sin\alpha_0 - x_0, -x\sin\alpha_0 + y\cos\alpha_0 - y_0)$

Solution for α_0 and x_0, y_0 :

 \rightsquigarrow Fourier-Mellin-Transformation (Rotation) and

→ Phase-Only Matched Filtering (Rotation & Translation)

 \sim fast, non-iterative procedure

Rigid Registration:

Maximum displacement: 1184.3µm (lower right) minimum: 254.1µm (upper left, "rotational center", outside image) $\times \odot | < < \leftrightarrow \rightarrow > > | 12345678$

Rigid Registration:

$\times \odot \mid < < \leftrightarrow \hookrightarrow > > \mid$ 1 2 3 4 5 6 7 8

Colour Adaptation:

- Compensation for saturation/staining fluctuations
- Criterion: reference multivariate distribution in RGB-colour space
- \rightsquigarrow estimated matrices for offset, scaling, and rotation

Colour Adaptation:

- Compensation for saturation/staining fluctuations
- Criterion: reference multivariate distribution in RGB-colour space

sam

 \rightsquigarrow estimated matrices for offset, scaling, and rotation

$$\begin{bmatrix} R \\ G \\ B \\ 1 \end{bmatrix}_{ref} = O_{ref}^{-1} \cdot R \cdot S \cdot O_{sam} \begin{bmatrix} R \\ G \\ B \\ 1 \end{bmatrix}$$

Colour Adaptation:

$\times \odot \mid < \prec \hookrightarrow > > \mid$ 1 2 3 4 5 6 7 8

Polynomial Non-linear Registration:

Compensation of slice-global distortions using sparsely-populated displacement vector fields, $M > (N + 1)^2$ vectors, Nth degree polynomials

Polynomial Non-linear Registration:

Compensation of slice-global distortions using sparsely-populated displacement vector fields, $M > (N + 1)^2$ vectors, Nth degree polynomials

 $(N + 1)^2$ coefficients p_n und q_n by means of linear regression (least squares estimation), N = 5× $0 \le < \leftrightarrow \hookrightarrow > > 12345678$ 17/65

Polynomial Non-linear Registration:

Maximum displacement: 84.4 μ m, minimum: 0 μ m. × $\odot |< < \leftrightarrow \rightarrow > > | 12345678$

Polynomial Non-linear Registration:

$\times \odot \mid < < \leftrightarrow \hookrightarrow > > \mid$ 1 2 3 4 5 6 7 8

Staining-based Tumour-Probability:

- Colour samples manually taken from typical slices
- Estimated multivariate densities of tumour c and background m
- Tumour probability @ pixel ξ : $\gamma(\xi) = \frac{\rho_c(\xi)}{\rho_c(\xi) + \rho_m(\xi)}$

Staining-based Tumour-Probability:

$\times \odot \mid < < \leftrightarrow \hookrightarrow > > \mid$ 1 2 3 4 5 6 7 8

Non-linear Curvature-based Registration:

- Compensation of remaining local distortions
- Minimisation of curvature of the displacement field components
- 4th order partial differential equation for the displacement field

Non-linear Curvature-based Registration:

- Compensation of remaining local distortions
- Minimisation of curvature of the displacement field components
- 4th order partial differential equation for the displacement field

$$\frac{\partial \vec{u}}{\partial t}(x,y,t) = -\alpha \Delta^2 \vec{u}(x,y,t) + \vec{f}(\vec{u}(x,y,t))$$

with
$$\vec{f} = \left(r(x - u_x(x,y), y - u_y(x,y)) - s(x,y)\right)$$
$$\times \nabla \left(r(x - u_x, y - u_y) - s(x,y)\right)$$
Non-linear Curvature-based Registration:

Maximum displacement: 36.2μ m, minimum: 0μ m. × $\odot | < < \leftrightarrow \rightarrow > > | 12345678$

Non-linear Curvature-based Registration:

$\times \odot | < < \leftrightarrow \hookrightarrow > > |$ 1 2 3 4 5 6 7 8

Total-Variation Filtering:

non-linear, edge-preserving low-pass filtering

•
$$J[u] = \int_{\Omega} \left| \nabla u(r) \right| dr + \frac{\lambda}{2} \int_{\Omega} (u(r) - u^{(0)}(r))^2 dr \to \text{Min}$$

- solution as time-dependent problem: $\frac{\partial u}{\partial t}(r,t) = \nabla \frac{\nabla u(r,t)}{|\nabla u(r,t)|} + \lambda (u^{(0)}(r) - u(r,t))$
- discrete solution has just one free parameter: assumed variance of noise

$\times \odot | < < \leftrightarrow \Rightarrow > > |$ 1 2 3 4 5 6 7 8

Total-Variation Filtering:

Tumour Segmentation (Thresholding):

3 Tumour Invasion Quantification

Segmented Tumour / 3-D Surface Rendering:

$\times \odot \mid < < \leftrightarrow \hookrightarrow > > \mid$ 1 2 3 4 5 6 7 8

3 Tumour Invasion Quantification (cont'd)

Ways:

•

- differential-geometric surface properties
- fractal surface properties

- surface-volume ratios
- compactness: surface³ volume²

• discrete compactness:
$$C_D = \frac{A_C - A_{C_{\min}}}{A_{C_{\max}} - A_{C_{\min}}}$$

$\times \odot |< < \leftrightarrow \rightarrow > > | 1 2 3 4 5 6 7 8$

4 Results

Overview:

Specimen	Number of Slices	Slice Thick- ness [µm]	Reconstructed Volume [mm ³]	Mean Residual Error [µm]			Discrete
Number				Rigid R.	Polyn. R.	Curv. R.	Compactness
1	96	5	30.1	20.1	12.9	5.9 (9.6)	0.884
2	90	6	16.7	13.2	7.5	7.1 (12.9)	0.995
3	230	10	146.1	15.7	7.8	5.6 (11.5)	0.954
4	230	10	133.6	12.9	5.9	3.5 (6.6)	0.915
5	250	10	130.8	10.7	9.8	6.2 (6.8)	0.966
6	300	10	104.7	10.9	7.0	3.9 (5.4)	0.935
7	250	10	148.9	14.7	7.7	4.8 (9.0)	0.906
8	300	10	146.8	10.6	5.9	3.5 (6.3)	0.951
9	150	10	100.5	15.9	8.6	5.0 (8.7)	0.881
10	100	10	62.8	14.1	7.5	5.2 (10.4)	0.944
11	301	10	143.4	11.5	8.0	5.9 (9.2)	0.892
12	260	10	123.8	15.2	10.3	7.5 (11.7)	0.902
13	500	5	89.3	13.0	7.5	5.1 (9.1)	0.976

 $\odot |< < \leftrightarrow \Rightarrow > > |$ 1 2 3 4 5 6 7 8

 $\times \odot | < < \leftrightarrow \hookrightarrow > > |$ 1 2 3 4 5 6 7

 $\times \odot | < < \leftrightarrow \Rightarrow > > |$ 1 2 3 4 5 6 7 8

6 Conclusions I

- 3-D reconstruction feasible at 10µm resolution
- invasion 'per continuitatem', no separated islets
- invasion patterns form a 'continuum' of compactnesses
- compactness basically corresponds to pathologist's assessment

Movie

7 Clinical Applicability?

Main Problem: 3-D Reconstruction Complexity

 $\times \odot \mid$ < < < < > > > > > 1 2 3 4 5 6 7 8

7 Clinical Applicability?

Main Problem: 3-D Reconstruction Complexity

Trade-Off: Options for 2-D?

7 Clinical Applicability?

Main Problem: 3-D Reconstruction Complexity

Trade-Off: Options for 2-D?

Comparison: Compactness 3-D vs. 2-D

Comparison:

 $\times \odot | < < \leftrightarrow \Rightarrow > > |$ 1 2 3 4 5 6 7 8

Comparison:

Correlation Coefficient: 0.994 $\times \odot | < \leftrightarrow \hookrightarrow > > | 12345678$

Comparison:

Correlation Coefficient: 0.994 \rightarrow practically equivalent $\times \odot | < < \leftrightarrow > > | 12345678$

Analysis of 76 Cases:

Analysis of 76 Cases:

Examples

$\times \odot \mid < < \leftrightarrow \hookrightarrow > > \mid$ 1 2 3 4 5 6 7 8

Analysis of 76 Cases:

Analysis of 76 Cases:

Compactness intervals significantly different ($p \le 0.0001$) × $\odot k < \leftrightarrow \rightarrow > > 12345678$

Analysis of 76 Cases: Results

- Parametrial involvement vs. Compactness: present/not present: 23/53, medians: 0.9478/0.9637, p≤0.028
- Lymphatic vessel invasion vs. Compactness: present/not present: 59/17, medians: 0.9559/0.9661, p≤0.033
- v other characteristics no non-random compactness differences: age (35a), pT, pN, rel. tumour invasion depth, G, V, inflamm. reaction, recurrence (5a)

$\times \odot \mid < \leftrightarrow \hookrightarrow > > \mid$ 1 2 3 4 5 6 7 8

Analysis of 76 Cases: Results

- Parametrial involvement vs. Compactness: present/not present: 23/53, medians: 0.9478/0.9637, p≤0.028
- Lymphatic vessel invasion vs. Compactness: present/not present: 59/17, medians: 0.9559/0.9661, p≤0.033
- v other characteristics no non-random compactness differences: age (35a), pT, pN, rel. tumour invasion depth, G, V, inflamm. reaction, recurrence (5a)

$\times \odot |< < \leftrightarrow \hookrightarrow > > | 1 2 3 4 5 6 7 8$

Analysis of 76 Cases: Results

- Parametrial involvement vs. Compactness: present/not present: 23/53, medians: 0.9478/0.9637, p≤0.028
- Lymphatic vessel invasion vs. Compactness: present/not present: 59/17, medians: 0.9559/0.9661, p≤0.033
- v other characteristics no non-random compactness differences: age (35a), pT, pN, rel. tumour invasion depth, G, V, inflamm. reaction, recurrence (5a)

$\times \odot | < < \leftrightarrow \Rightarrow > > |$ 1 2 3 4 5 6 7 8

Analysis of 76 Cases: Interpretation

Lower compactness for present parametrial involvement and lymphatic vessel invasion: *diffuse invasion forms*

Analysis of 76 Cases: Interpretation

Lower compactness for present parametrial involvement and lymphatic vessel invasion: *diffuse invasion forms*

- faster penetration of cervical stroma
- more frequent affection of lymphatic vessels
- → discrete compactness might represent some motile phenotype (in analogy to micro vessel density as angiogenic phenotype)

Analysis of 76 Cases: Interpretation

Lower compactness for present parametrial involvement and lymphatic vessel invasion: *diffuse invasion forms*

- faster penetration of cervical stroma
- more frequent affection of lymphatic vessels
- → discrete compactness might represent some motile phenotype (in analogy to micro vessel density as angiogenic phenotype)

Analysis of 76 Cases: Interpretation

Lower compactness for present parametrial involvement and lymphatic vessel invasion: *diffuse invasion forms*

- faster penetration of cervical stroma
- more frequent affection of lymphatic vessels

 → discrete compactness might represent some motile phenotype (in analogy to micro vessel density as angiogenic phenotype)

8 Conclusions II

- discrete compactness realisable & meaningful for tumour invasion quantification
- illustrative morphometric measure
- simple procedure, fully automatable

9 Advanced Tumour Reconstruction & Analysis

 $\times \odot | < < \leftrightarrow \rightarrow > > |$ 1 2 3 4 5 6 7 8

9 Advanced Tumour Reconstruction & Analysis (cont'd)

- Specific question:
 - $\rightarrow\,$ the spatial organization of a cervical cancer
 - \Rightarrow the relation of the tumor invasion front vs. the infiltration with CD3+ T-cells.

9 Advanced Tumour Reconstruction & Analysis (cont'd)

- Specific question:
 - $\rightarrow\,$ the spatial organization of a cervical cancer
 - $\Rightarrow\,$ the relation of the tumor invasion front vs. the infiltration with CD3+ T-cells.

9 Advanced Tumour Reconstruction & Analysis (cont'd)

- Specific question:
 - $\rightarrow\,$ the spatial organization of a cervical cancer
 - \Rightarrow the relation of the tumor invasion front vs. the infiltration with CD3+ T-cells.
- Cervical squamous cell carcinoma specimen
 - $\rightarrow\,$ serial section with 84 slices, three interleaving subsets stained with
 - a H&E (routine reference stain)
 - b the cervical carcinoma biomarker p16^{INK4a}
 - c the T-cell marker CD3

$\times \odot \mid < < \leftrightarrow \hookrightarrow > > \mid 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8$

• 3-D Tissue Reconstruction

• 3-D Tissue Reconstruction

 $\times \odot \mid < \leftrightarrow \hookrightarrow > > \mid 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8$

3-D Tissue Reconstruction

Movie

• Automatic Segmentation Examples

$\times \odot \mid < \leftrightarrow \hookrightarrow > > \mid$ 1 2 3 4 5 6 7 8

• Automatic Segmentation Examples: Post-Processing

• 3-D Reconstruction results: Surface rendering

Overall reconstructed tissue volume: 60.9 mm^3 , Tumor Compactness: 0.89, Tumor vol.: 11.6 mm^3 , T-Lymphocyte vol.: 1.1 mm^3

Movie

• How to do a local tumor invasion front analysis:

Mean surface curvature, related to

- $\rightarrow\,$ the respective local minimum tumor to T-cell distance
- $\rightarrow\,$ a T-cell originated diffusing substance's concentration at the tumor surface

• Mean curvature of tumor surface

$\times \odot \mid < < \leftrightarrow \hookrightarrow > > \mid$ 1 2 3 4 5 6 7 8

• 3-D Reconstruction results: T-Cell \leftrightarrow Tumor Distances

58/65

• 3-D Reconstruction results: T-Cell \rightarrow Tumor Diffusion

59/65

• Conditional probability density $p_d(\kappa|d)$ for the mean curvature κ at a certain distance d from the T-cells

• Conditional probability density $p_d(\kappa|d)$ for the mean curvature κ at a certain distance d from the T-cells

→ T-cells seem to cause a smoothing of the tumor surface (the smaller the d) × \odot k < \leftrightarrow \Rightarrow > > 12345678

• Probability density $p_s(\kappa, c_s)$ for curvature κ and substance concentration c_s (subst. const. emitted by T-cells)

• Probability density $p_s(\kappa, c_s)$ for curvature κ and substance concentration c_s (subst. const. emitted by T-cells)

• with rising c_s , this range shrinks to low $|\kappa|$ (increasing tumor smoothness)

$\times \odot \mid < \leftrightarrow \hookrightarrow > > \mid 1 2 3 4 5 6 7 8$

Movie

