Modeling Bacterial Aging part of "Räumliche Organisation molekularbiologischer Prozesse"

Sonja Prohaska

Computational EvoDevo University Leipzig

Leipzig, SS 2012

< ロ > < 同 > < 回 > < 回 > .

Sonja Prohaska

Assumption

Morphological and functional symmetric and asymmetric cell division exists.

Question

Is aging a conditional strategic choice or an inevitable outcome for bacteria?

ヘロト ヘ戸ト ヘヨト ヘヨト

3

Components Relevant for Aging

- a cell is made up of aged/aging components (i.e. pole-associated proteins)
- each component ages stepwise (passes from one age class to the next)
- newly synthetisized components start in the first age class
- the components of a cell can be represented by a age distribution similar to a population pyramid

(日)

Age Classes and Transition Rates

- let's assume *m* discrete age classes
- C_n is the number of components in age class n
- *R_n* is the reproductive efficiency of the components in age class *n*
- *P_n* is the probability that a component of age class *n* survives to age class *n* + 1

< □ > < 同 > < 回 > <

Given the age distribution of components at time *t* what is the age distribution at time t + 1?

$$\begin{pmatrix} C_1 \\ C_2 \\ C_3 \\ \vdots \\ C_m \end{pmatrix}_{t+1} = \mathbf{LM} \times \begin{pmatrix} C_1 \\ C_2 \\ C_3 \\ \vdots \\ C_m \end{pmatrix}_t$$

< ロ > < 同 > < 回 > < 回 > .

Find a Matrix LM such that the above equation is fulfilled.

Matrix Multiplication Rule

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} ax + by \\ cx + dy \end{pmatrix}$$

Generation of new components:

$$C_1^{t+1} = C_1^t R_1 + C_2^t R_2 + \dots + C_m^t R_m$$

Components carried from age class n to n + 1:

$$C_{n+1}^{t+1} = C_n^t P_n$$
 for $n \in 2, 3, ..., m-1$

(日)

3

The Leslie Matrix (LM)

$$\begin{pmatrix} R_1 & R_2 & \cdots & R_{m-1} & R_m \\ P_1 & 0 & \ddots & 0 & 0 \\ 0 & P_2 & \ddots & 0 & 0 \\ \vdots & \vdots & \ddots & 0 & 0 \\ 0 & 0 & \cdots & P_{m-1} & 0 \end{pmatrix}$$

Properties of the Leslie Matrix:

- the **eigenvector** corresponding to the dominant eigenvalue of the **LM** provides the stable age distribution
- the dominant eigenvalue of the LM, λ, gives the growth rate at the stable age distribution
- Once the stable age distribution has been reached, a population undergoes exponential growth at rate λ

Setting Parameters

Reproductive efficiency

$$R_n = R_1 - an^b$$

- the reproductive efficiency is highest in the first age class, $R_1 = 1$
- reproductive efficiency decreases with the age class *n*
- linear decline: b = 1, parameter a
- non-linear decline: b > 1 convex, b < 1 concave

Survival probability

$$P_n = \begin{cases} 1 & \text{for } n \in 1, 2, \dots, m-1 \\ 0 & \text{for } n = m \end{cases}$$

- all components of age class m 1 are carried on to the next class
- all components in the last age class *m* do not survive

- a cell with components C_n devides such that
 - all components of one cell are new, belong to C₁
 - all components of the other cell are old, belong to C_{n+1}
- \Rightarrow cell age class is identical to the component age class
- → the Leslie Matrix describes the age class distribution in the population of cells

> < 同 > < 回 > < 回 > <</p>

Asymmetric Division Model

- at cell division, the components of each age class are distributed exactly equally (not stochastically)
- every cell has identical age class distribution of the components
- cells are assumed to be immortal as each cell has a majority of young components

< ロ > < 同 > < 回 > < 回 > < □ > <

Symmetric Division Model

æ

Sonja Prohaska

Stabe Age Class Distribution

In the symmetric division model, the oldest age class has a higher frequency because of the accumulation of components.

(日)

э

- components of the highest age class, *C_m*, might be repaired with **repair efficiency** *r*
- rC_m are substracted from C_m (they are removed)
- *rC_m* are added to C₁ (they are as if they were newly synthesized)

At r = 1 the age class distribution for the symmetric division model is identical to that of the asymmetric divison model.

Growth Rate and Growth Yield

Growth rate

$$\frac{\ln(N(t_2)) - \ln(N(t_1))}{t_2 - t_1}$$

- $N(t_1)$ number of cells in the population at time t_1
- $N(t_2)$ number of cells in the population at time t_2

Growth yield

$$\frac{B(t_1,..,t_2) - D(t_1,..,t_2)}{B(t_1,..,t_2) + rC_m}$$

B(t₁,..,t₂) number of cells born in the time from t₁ to t₂
D(t₁,..,t₂) number of cells died in the time from t₁ to t₂

・ 戸 ト ・ ヨ ト ・ ヨ ト

Growth Rate and Growth Yield

- The growth rate of the symmetric model is always less than the asymmetric one.
- The growth yield of the symmetric model at optimum repair efficiency is higher than the asymmetric model.

When is symmetric cell division beneficial over asymmetric cell division?

Sonja Prohaska

Milind Watve, Sweta Parab, Prajakta Jogdand and Sarita Keni (2006). Aging may be a conditional strategic choice and not an inevitable outcome for bacteria. PNAS 103(40):14831-14835

< ロ > < 同 > < 回 > < 回 > .

э