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We deseribe a comparative protein modelling method designed to find the most probable
structure for a sequence given its alignment with related structures. The three-dimensional
(3D) model is obtained by optimally satisfving spatial restraints derived from the alignment
and expressed as probability density functions (pdfs) for the features restrained. For
example, the probabilities for main-chain conformations of a modelled residue may be
restrained by its residue type, main-chain conformation of an equivalent residue in a related
protein, and the local similarity between the two sequences. Several such pdfs are obtained
from the correlations between structural features in 17 families of homologous proteins
which have been aligned on the basis of their 3D structures. The pdfs restrain C*-C*
distances, main-chain N-O distances, main-chain and side-chain dihedral angles. A smooth-
ing procedure is used in the derivation of these relationships to minimize the problem of a
sparse database. The 3D model of a protein is obtained by optimization of the molecular pdf
such that the model violates the input restraints as little as possible. The molecular pdf is
derived as a combination of pdfs restraining individual spatial features of the whole
molecule. The optimization procedure is a variable target function method that applies the
conjugate gradients algorithm to positions of all non-hydrogen atoms. The method is
automated and is illustrated by the modeiling of trypsin from two other serine proteinases.

Keywords: comparative protein modelling; restraints: optimization; protein database;
serine proteinases

1. Introduction

Approaches to determination and prediction of
protein three-dimensional (3Di} structure ean be
classified on the basis of the predominant informa-
ticn that is used to calculate the model. The experi-
mental methods include X-ray crystallography
{Blundell & Johnson, 1976) and multi-dimensional
nuclear magnetic resonance (NMR) techniques
{Bax, 1989). The theoretical approaches {(Fasman,
1939) can be divided into physical and empirical
methods. The physical prediction methods are based
on interactions between atoms and include
molecular dynamics and energy minimization
(Brooks TIT et al., 1988), whereas the empirical
methods depend on the protein structures that have
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been already determined by experiment. They
include combinatorial (Cohen & Kuntz, 1989) and
comparative modelling (Blundell ef of., 1987, Sali e
al., 1990; Swindells & Thornton, 1991).
Comparative modelling uses experimentally
determined protein structures to predict conforma-
tion of other proteins with similar amino acid
sequences. This is possible because a small change in
the sequence usually results in a small change in the
3D structure (Hubbard & Blundell, 1987; lLesk &
Chothia. 1986). The accuracy of protein models
obtained by comparative modelling compares
favourably with that of models calculated by other
theoreticat methods. The comparative method
produces modeis with an r.m.s. error as low as 1 A
for scquences that have sufficiently similar homo-
logues with known 31} structures (Topham et al.,
1991): in contrast, physical prediction methods and
combinatorial modelling calculate structures with
r.m.s. errors of approximately 3:5 A for small pro-
teins ((Cohen & Kuntz, 1989; Wilson & Doniach,
16891, On the other hand, comparative modelling is
not as accurate as X-ray crystallography and NMR,
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which can determine protein structures with an
r.m.s. error of approximately 0-3 and (-5 A, respec-
tively (Clore & Gronenborn, 1991). It is also
restricted to sequences with closely related proteins
with known 3D structures. Nevertheless, since 289,
of the known sequences have at least a 259, residue
identity with one of the known structures (Chothia,
1992), we can estimate that an order of magnitude
more sequences can be modelled by comparative
modelling than there have been protein structures
determined by experiment. This ratio is likely to
increase as the fraction of the known structural
motifs increases and the gap between numbers of
the known sequences and 3D structures widens.

In the early eighties, manual comparative
modelling {Browne et al., 1969; Warme ¢f al., 1974)
was facilitated by manipulation of protein molecules
on the graphics terminal (Greer, 1981} that was
made possible by the computer programs such as
FRODO (Jones, 1978). The method was later
improved by the introduction of largely automated
modelling algorithms that can use several known
structures to model the unknown member of the
family (Sutcliffe et aol., 1987a,b). This approach is
based on assembling the model from parts of
dissected related structures (Blundell et ai., 1986,
1987; Blundell & Sternberg, 1985; Claessens ef al.,
1989; Greer, 1981, 1990; Robson et af., 1987; Schiffer
et al., 1990; Stewart ef al., 1987; Unger ef al., 1989).
Known structures that are homologous to the
sequence being modelled are first superposed as
rigid bodies using multiple least-squares fitting. The
sequence of the unknown is then aligned with the
consensus sequence of the known structures. The
model is assembled from rigid blocks of structure
corresponding to the core regions, loops and side-
chains from the aligned protein structures. This
modelling procedure is very successful when the
known structures cluster around that to be
predicted and where the percentage sequence iden-
tity to the unknown is greater than 40%,. For
example, the model of bovine trypsin built using the
known structures of four other serine proteinases
has the r.m.s. difference from the known structures
of only 0-64 A for the 150 residues in the core of the
molecunle (Overington, 1981). Similarly, 809, of
side-chain conformations are correctly predicted for
closely homologous structures. In all cases, the
accuracy of the prediction decreases quickly as the
sequence identity between the known and unknown
decreases.

In addition to the assembly of rigid body frag-
ments, there are other automated and semi-
automated methods for comparative modelling.
Modelling by satisfaction of spatial restraints
obtained from the alignment of the target sequence
with homologous templates of known structure was
proposed by Sali et al. (1990). An elegant distance
geometry approach for construeting all-atom
models from distance constraints was described by
Havel & Snow {(1991). A similar method was
presented by Srinivasan et af. {1993). Another
method based on satisfaction of main-chain distance

restraints by molecular dynamics was described by
Fujiyoshi-Yoneda et af. (1991). Neural networks and
optimization in Cartesian space were used to caleu-
late a model from a C* distance plot of a homologous
protein (Bohr ef af., 1990). Recently, comparative
modelling by optimization of a potential function
constructed from a sequence alignment with related
structures was described (Snow, 1993). Protein
structure was predicted by optimizing an associa-
tive-memory Hamiltonian whosge parameters were
obtained by using the random energy model with
the data from the related protein structures
(Friedrichs et al., 1991). Several methods for
constructing full backbone co-ordinates from the
positions of the C* atoms alone were described
{Bassolino-Klimas & Bruccoleri, 1992; Correa, 1990;
Holm & Sander, 1991; Levitt, 1992; Luo ef al., 1992;
Payne, 1993; Reid & Thornton, 1989; Rey &
Skolnick, 1992). These methods can be applied to
comparative modelling when homologous structures
are used as the source of the guiding C* positions
and when combined with the loop and side-chain
construction algorithms (Holm & Sander, 1991,
1992). And finally, a new class of methods based on
recognition of the native fold using database of all
known protein structures can be seen as a first step
towards modelling sequences that are only distantly
related to the known protein structures (Thornton et
al., 1991). These methods include template
matching with three-dimensional profiles (Bowie et
al., 1991), topology fingerprinting (Godzik et af.,
1992}, optimal threading of a sequence onto a 3D
structure (Jones ef al., 1992), tertiary structure
recognition (Friedrichs et al., 1991}, and detection of
native-like models for a given sequence (Sippl &
Weitckus, 1992).

Numerous other techniques have been described
that do not predict the whole structure but only
some aspects of it. These methods can often be used
in combination with each other. Side-chain con-
formation has been predicted from similar strue-
tures, from proteins in general, and from energy
considerations (Desmet et al., 1992; Dunbrack &

Karplus, 1993; Holm & Sander, 1992; Lee &
Subbiah, 1991; McGregor et al., 1987; Ponder

& Richards, 1987; Schiffer ef al., 1990; Singh &
Thornton, 1990; Summers ef al., 1987; Summers
& Karplus, 1989; Tuffery et al., 1991, Wilson ef al.,
1993). Substitutions, insertions and deletions, such
as those in loops, have been modelled by regular-
izing a suitable fragment selected from homologous
or other structures, or by conformational search
based on minimizing the energy of a segment, or by
a combination of the approaches (Bruccoleri &
Karplus, 1987; Chothia et al., 1939; Dudek &
Scheraga, 1990; Jones & Thirup, 1986; Martin ef al.,
1989; Mas ef af., 1992; Moult & James, 1986,
Sibanda et el.,, 1989; Summers & Karplus, 1990;
Topham et al., 1993). The geometry of disulphide
bridges has been predicted on the basis of informa-
tion on disulphide bridges in experimentally deter-
mined protein structures (Sowdhamini et al., 1989;
Thornton, 1981).
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Figure 1. Comparative protein modelling by satisfac-
tion of spatial restraints. A 3D model of sequence X has
to be calculated from the known homologous structures
A, Band C. First, the known 3D structures are compared.
In order to indicate spatial features of the known struc-
tures, residue codes in the resulting alignment are format-
ted using the convention of the JOY program {Overington
et al., 1990). TPPER CASE, solvent inaccessible amino
acid residues; lower case, solvent accessible amino acid
residues; underline, hydrogen bond to main-chain
carbonyl; bold type, hydrogen bond to main-chain nitro-
gen; tilde {7), side-chain-side-chain H-bond: italic, posi-
tive main chain dihedral angle ®. The sequence of the
unknown is then aligned with the related structures.
Next, the spatial features of the known structures are
trensferred to the sequence of the unknown; thus, a
number of spatial restraints on its structure are obtained.
For example, since there is a conserved hydrogen bond to
the main-chain carbonyl at position 6 in all 3 known
struetures, we assume that the equivalent hydrogen bond
also occurs in the sequence of the unknown. Finally, these
restraints are satisfied as well as possible to obtain the
model for the 3D structure of the unknown.

Future improvements of comparative modelling
should aim to model proteins with lower homology
to known structures, to increase the accuracy of the
models, and to make modelling fully antomated. In
this paper, we attempt to achieve these goals by
pursuing the following fundamental question: What
is the most probable structure for a certain sequence
given its alignment with related structures? Our
approach, outlined in Figure 1, follows from the
method for comparison of protein structures imple-
mented in the program COMPARKER (Sali &
B undell, 1990; Sali ef al., 199); Zhu e al., 1992).
The modelling methed was developed to use as
many different types of data about the unknown as
possible. The method consists of three stages:
(1) alignment of the sequence to be modelled
with related protein structures and segments,
{2) extraction of spatial restraints on the sequence
using the alignment, and (3) satisfaction of the
restraints to obtain a 3D model. This paper
describes the procedures involved in the last two
stages.

Spatial restraints on the sequence of the unknown
are obtained from the statistical analysis of the
relationships between various features of protein
structure. A database of 17 family alignments
including 80 proteins was constructed to obtain the

tables quantifying the relationships, such as those
between the two equivalent C*-C* distances or
between equivalent main-chain dihedral angles from
two related proteins. These relationships were
described as conditional probability density funec-
tions (pdfs) for the features to be predicted. For
example, probabilities for different values of the
main-chain dihedral angles are calculated from the
type of a residue considered, from main-chain con-
formation of an equivalent residue, and from
sequence similarity between the two proteins. The
calculation of the 3D model by satisfaction of
spatial restraints is achieved by optimization of the
molecular pdf. This function is a combination of
pdfs restraining individual spatial features of the
whole molecule. The optimization method is a vari-
able target function method that applies the conju-
gate gradients method to positions of all non-
hydrogen atoms. To illustrate comparative
modeiling by satisfaction of spatial restraints, we
describe the modelling of the 3D structure of trypsin
based on its relation to two other serine proteinases,
tonin and elastase.

2, Derivation of Spatial Restraints

If a sufficient number of strong restraints is speci-
fied, the 31 structure of the protein is well deter-
mined. In this section, relatively simple restraints
on the protein conformation are defined from the
information about related protein structures.

A restraint is most precisely defined in terms of a
probability density function, p(r). for the feature x
that is restrained. It can be of any form provided
that it is non-negative and that it integrates to 1
over the range of all possible values for x. The actual
finite probability of an event x; < x < x, is obtained
by integration of p:

*2

Plr; <x <x)) =I plx)dz.

x1

The expression of a restraint in terms of a pdf
gives more information on the possible values of the
restrained feature than the mean of measurements
alone. Tt is also more complete than the upper and
lower bounds on a certain atom—atom distance,
such as those wused in the distance geometry
approach to derivation of protein 3D gtructure from
multi-dimensional NMR data.

(a) An outline of the derivation of probability
density functions

Pdfs useful in protein modelling can be calculated
either analytically using statistical and classical
mechanics (section {e), below} or empirically using
the database of known protein structures (sections
(f) to (1), below). In either case, the pdf suitable for
restraining a cerlain feature x can be written as:

plefa,b, ... e). (1

This is a conditional pdf and gives a probability
density for x when a, b, . . ., ¢ are specified. It can be
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seen as an ordinary pdf for x that also depends on
the values of other variables, For example,
p(y1/residue type, @, ¥} could be used to predict the
side-chain dihedral angle y; from the type of a
residue and its main-chain angles ® and ‘F.

For the pdf to be useful in modeiling, all the
features in the association (x, a, b, . . ., ¢}, except for
x, must be known at the prediction stage.
Additionally, = has to be a spatial feature of the
sequence to be modelled. The most useful known
feature is of the same type as & but associated with
the equivalent position{s) in a related known struc-
ture. For example, when restraining a certain C*-C*
distance, the most useful information is the equiva-
lent distance from a related structure.

In reality, it is not possible to obtain the true
funetion p, but only its approximations:

plzia, 20 ® Weas,. 2 flz,a.b .. 6 Q) (2)

where Wx,a!b'_'__c is a table spanned by z,a,b, ..., ¢
that contains as its elements the observed relative
frequencies for the occurrence of x given a. b, .. ., ¢,
and fis an analytie function fitted to the observed
W. As with any pdf, W and f must satisfy the
integration and non-negativity criteria mentioned
above. fis a function with parameters q which are
obtained by applying the least-squares principle.
The best q is defined as the g that minimizes the
function:

rm.s. = \/ 3

x.ab,.....¢

["Vx,a,b,....cif(x’ @, b’ s q)]l

3)

The multidimensional table of relative frequencies
W is calculated from the absclute frequencies W’
using:
uf
W x,4,b,....C ] 4
Z Wx a,b,....c ( )

The ahsolute frequencies, W', are obtained directly
by counting the numher of occurrences of each
combination of (z, a, b, ..., ¢) values in the sample.
In this study, the sample is derived from a database
of known protein structures and their alignments.
Thus, before the restraints can be derived, a data-
base of known protein structures, their features and
alignments must be constructed.

{b) Database of known protein structures, their
Seatures and alignments

{i} Owverview of the local database

Members of 17 families of related proteins
extracted from the Brookhaven Protein Databank
{Abola et al., 1987; Bernstein ef al., 1977) are listed
in Table 1. The composition of this sample is
discussed in subsection (ii), below. The co-ordinate
files in the local database were edited to delete
records for non-protein atoms, excessive stretches
where the atomic co-ordinates were not defined, and
duplicate atoms of double oceupancies. The files
containing several related domains or subunits were

split so that there was one homologous structure per
file. These homologous structures were then aligned
by the program COMPARER (Sali & Blundell,
1980; Zhu et al., 1992) to obtain multiple alignments
for each of the families in the local database. These
alignments were added to the local database.
Finally, a number of features of protein structures
were also calculated and stored in the database.
These features are defined below. Recently, two
other databases of structural family alignments
have been described (Holm ef al., 1992; Pascarella &
Argos, 1992).

The program MDT was written to explore the
local database and to derive the best pdfs for com-
parative modelling. The inputs to the program
are names of selected features, a list of discrete
values for tabulating these features (numerical or
symbolic}, and the list of alignments. These are then
used to caleulate various multi-dimensional
frequency tables W_ ,, . by counting the oceur-
rences of all the required combinations of features
x a,b, ..., ¢in the local database. The tables W’
were subsequently used as outlined above and
described in detail below to calculate the relative
frequency tables W and sometimes the corre-
sponding pdfs f. For fitting pdf f to the observed
relative frequencies W, the Levenberg-Marquardt
algorithm for non-constrained least-squares fitting
of a non-linear multidimensional model (Press ef al.,
1986) was implemented in the program LSQ.

{ii) Composition of the local databuse

The local database contains representatives of all
four structural classes of proteins (Table 1): o, f,
o+ B and a/f. The frequency of the f-sheet reudue%
is similar to that of the residues in the helical
conformation (Fig. 2(a)). The percentage sequence
identity for the sequences compared varies from 69
to 989, (Fig. 2(b)). This is also reflected in the
distribution of residue neighbourhood differences for
all equivalent pairs of residues in the database
(Fig. 2(c)). Most of the protein structures in the
database were solved at a medium or high resoiu-
tion, although there are also a few low resolution
structures  (Fig. 2(d)). Additional compositional
characteristics of the database, frequency of amino
acid residue types and distribution of fractional
side-chain solvent accessibilities, are shown in
Figure 2(e) and (f). Figure 2 indicates that the loeal
database of protein structures and their alighments
is a representative sample of globular proteins and
is therefore suitable for uncovering the general
relationships between features of protein structure.

{iti) Tabulating associations between profein features

The following is a detailed deseription of the MDT
program used for quantifying associations between
protein features.

The classification of features from COMPARER
(Sali & Blundell, 1990) also proves useful for
describing the MDT program: features can be either
properties associated with a single element or
relationships between two or more elements.
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Table 1
Families of homologous proteins in the local database

DB Residue  Resolution
Name code range (&)

B Proteins;
Aspartic proteinases, lobes

I, parasitica endothiapepsin 4ape-n 1-174 2-1
4ape-c  175-326
2. penicillum penicillopepsin 2app-n 1-174 18
2appn  1756-323
1. chirensis rhizopuspepsin 2apr-n 1-178 1-8
2apr-c 179-325
porcine pepsin Apep-n 1-174 2-3
apep-¢  175-327
bovine chymosin demsn 1-174 2-2
3ems-¢ 175327
HIV-protease dhvp 23
RSV-protease 2rspa 240
Serine proteinases
rat tonin 1ton 18
poreine kallikrein 2pkaa 2-0
bovine trypsin 2ptn 15
hovine chymotrypsin 4chaa 1-7
poreine elastase 3est 16
rat mast cell protease-11 3rp2a 19
N, griseus trypsin Isgt 17
. griseus proteinase A 2sga 1-5
L. enzymogenes o-lytic 2alp 17
proteinase
. griseus proteinase B Jagh I-8
Azurins
4. denitrificans azurin 2azaa 18
P geruginosa azurin lazu 2:7
I'r munoglobuling, domains
FAB (Lambda) KOL 2{bdh 1-117 20

2fbd 123 -221 1-9
3fabh 2-116 2-0
3fabl 114-2i4

FAB (Prime) NEW

3fabl 3 108
B-J Fragment REl Ireia 1-107 20
HyHEL-5 FAB 2hfll 1-105 5
B-J Fragment RHE 2rhe 1-111 16
FAB (Kappa) J539 1{bjl 111 213 26

1fhjh 123-218

FC (Human) Ifela 238 341 2:9
y-Urystallins, motifs
alf p-1T erystallin 1ger-1 1-39 1-6
lger-2 40-87
lger-3 88128
lger-4  129-174
bovine -1V erystallin 2ger-1 1-38 23
2ger-2 40-87
2per-3 88-128
2ger-4 120-174
o+ f Proteins:
Cysteine proteinases
apain Ipap 17
actinidin 2act 1-7
Lysozymes
1en egg white lysozyme 1zt 20
1uman lysozyme 121 15
o iProleins:
Globins
numan haemoglobin 2hhba 1-7
2hhbb
sperm whale myoglobin 3mbn 20
7. thummi thummi erythro- lecd 1-4
cruorin
sea lamprey haemoglobin 2ihb 2-0
eghaemoglobin 11h1 20

Table 1 (continued }

PDB Residue  Resolution
Name code range tA)

Phospholipases

bovine phospholipase A, 1bp2 117
porcine phospholipase A, 1p2p 26
. atror phospholipase A, lpp2 25
Cytochromes (1)
albacore tuna eytochrome ¢ eyt 1'8
rice embryo cytochrome ¢ leer 15
R. rubrum cytochrome ¢, 2e2c 2-0
bonito eytochrome ¢ leye 23
P. denitrificans cytochrome 155¢ 25
c-Hbt
Cytochromes (2)
P. aernginosa cytochrome 3ale 1-6
c-551
A. vinelandii extochrome eg leed 2:5
Photosynthetic reaction centres,
domains
R. viridis reaction centre Iprem 1-323 23
Iperl 1-273
R. sphaerotdes reaction 4rerm 1-305 28
centre drerl 1-27H
aff Proteins:
Ferredoxing
P. aerogenes ferredoxin 1dx 20
A. winelandii ferredoxin 4fdl 19
Flavodoxins
Clostridium mp flavodoxin 3fxn 14
D, vulgaris flavodoxin 1fx1 20
Dehydrofolate reductases
E. coli dihydrofolate 4dfra 1-159 17
reductase
L. casei dihydrofolate 3dir 1-162 -7
reductase
Dehydrogenases
hotse aleohol dehydro- Badh 193-318 24
genase
porcine malate dehydro- 4mdha 4-154 24
genase
lobster glyceraldehyde 1gpd 1-148 29
dehydrogenase
dogfish lactate dehydro- 61dh 22-165 20
genase
Oxidereductases
human glutathione reductase  3grsn 18-160 15
3grsm  186-294
P. fluorescens p-hydroxy- iphh 1-164 23

benzoate hydroxylase

The structures were extracted from the Brookhaven Protein
Databank {PDB} (Abola et al., 1987; Bernstein et al., 1977). Chain
identifiers are shown as the fourth character in the PDB code.
Special designators: aspartic proteinases, -n for N-terminal lobes,
-¢ for (-terminai lobes; immunoglobulins, -v for variable
domains, -¢ for constant domains; y-erystalling, -1, -2, -3, -4, for
motifs 1, 2, 3 and 4,

Features are defined at both the residue and the
whole protein level. For example, there are residue—
residue relationships such as a ¢"-C*® distance and
protein—protein relationships such as the fractional
sequence identity. There are also residue properties,
such as a residue solvent accessibility and protein
properties, such as the resoiution of an X-ray analy-
sis, Associations among features of two related pro-
teins are crucial for comparative modelling.
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Figure 2. Compuosition of the local database. Distributions of various features in the local database are shown.
(a) Main-chain conformation classes for all residues (Wilmot & Thornton, 1990). (b) Fractional sequence identity score
for all pairs of related proteins, {¢) Residue neighbourhood difference for all equivalent residue pairs. {cl) Resolution of
X-ray analysis for all proteins. (e) Residue types for all residues. (f) Fractional side-chain solvent accessibility for all

residues.

Consequently, for each feature type MDT
distinguishes at least two variants that are asso-
ciated with a single protein. The first variant is a
feature associated with the first protein in a pairwise
alignment and the second variant is the same
feature associated with the second protein in the
alignment. These two proteins are treated as the
template and the target in prediction, but at this
stage both the structures are known. MDT can also
use triple alignments to correlate features from
three proteins {see section 3{a)(i) for an application).

The statistical sample for construction of the
frequency table W’ depends on the type of features
that are correlated among themselves. For example,
if only a distribution of residue types is wanted,
then the sample consists of all amino acid residues
in the local database; if the distribution of protein—
protein comparison scores is reguired, then the
sample includes all homologous protein pairs in the
local database; if C*~C* distances are tabulated.
then the sample is all intra-molecular residue—
residue pairs in the local database; if C*-C* distances

A

in one protein are correlated with C*~C* distances in
another protein, then the sample includes all pairs
of equivalent C°-C* distances in all homologous
pairs of proteins in the database. The MDT program
automatically constructs the correct type of the
sample from the nature of the features to be tabu-
lated. Sizes of the samples for various types of
features, with the current local database, are listed
in Table 2. The sample for the combination of
features is always the largest of the samples for the
individual features in the analysis.

Table 2
Size of the local database
Alignments 17
Protein structures 80
Homologous protein pairs 488
Residues 11,352
Equivalent residue pairs 92,780
Intramolecular residue pairs 1,888,851
Equivalent intramolecular residue pairs 20,270,936
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The following is a description of the protein
features that can be selected in MDT and were used
in this paper. For a summary of these features and
their symbols, see Table 3.

4mino acid residue type. Twenty standard amino
acid residue types are distinguished. Asx is classified
as Asn and Glx as Gln. All residue types other than
these 22 are ignored.

Main-chain dihedral angles ® and . These are
computed by the program DIH, following the
TUPAC convention (Kendrew et al., 1970).

Secondary structure class of a residue. This coarse
definition of main-chain conformation is based on
the secondary structure definition by Kabsch &
Sander (1983). If the @ angle is positive, the main-
chain conformation is assigned to class +®; other-
wise, the secondary structure assignments from
SSTRUC (written by David Smith) are used to
select one of the three remaining classes: helical
{Kabsch and Sander codes: H, a-helix; G, 3,,-helix;
I, =m-helix), extended (E, strand in a f-sheet;

Table 3
Features used in this paper thalt may be selected in
M DT to span multi-dimensional frequency tables W

Index Variable Feature

1 r Amino acid residue type

2 @ Main-chain dihedral angle &

3 ¥ Main-chain dihedral angle ¥

4 f Secondary structure class of a residue

5 M Main-chain conformation class of a residue

] o Fractional content of residues in the main-
chain conformation class A

7 Xi Side-chain dihedral angle ;. i =1.2.3, 4

8 € Side-chain dihedral angle y; class,
i=1,23.4

9 a Residue solvent accessibility

1 a Average accessibility of two residues in one
protein

il § Residue neighbourhood difference between
two proteins

12 ] Average residue neighbourhood difference
between two proteins

13 [ Fractienal sequence identity between two
protems

14 o (*-C* distance

15 Ad Difference hetween two (- distances in

two proteins
h Main-chain N-0 distance

17 Ak Difference between two main-chain N-O
distances in two proteins

18 b Average residue B,

19 i Resolution of X-ray analysis

AL g Distance of a residue from a gap in
alignment

ot g Average distance of a residue from a gap

"he second column lists the variable names that are used for
the features in pdfs and in frequency tables W', Features that are
not associated with 2 proteins can be used independently for 2
related proteins in a pairwise alignment or for 3 related proteins
in u triple alignment, For example, a 2D table can be constructed
that is spanned by a residue type r in one protein and a residue
type v at the equivalent position in a related protein; the prime is
geterally used to designate that the feature is from the second
pretein and 2 primes that it is from the third protein. The A
syribol refers to the difference between features f and f:
Af=f—f. O, N, oxygen and nitrogen aloms in the main-chain
peptide group; I, atomic isotropic temperature factor,
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Figure 3. Definition of the main-chain conformation
classes. The plot shows W0, ¥) determined from the
local database of protein structures. It is divided nto
10°x10° squares. The areas corresponding to the 6
characteristic peaks are delimited by thick lines. These
areas define the residue main-chain conformation classes
A. B, P L. GG and E. The scale on the right corresponds to
In[W/(D.P)+1].

B, f-buige; °
S, bend).

Main-chain conformation class of a residue. A con-
venient way of deseribing the residue main-chain
conformation is by the pair of the main-chain
dihedral angles (@, '¥). For ail residues except Pro,
those two degrees of freedom cover most of the
conformation space allowed to the main-chain. The
third main-chain dihedral angle, w, has a mono-
modal distribution with a mean of 180° and a small
standard deviation of approximately 6°. Pro is the
only exception where the w distribution is bimodal,
with the second maximum at (° corresponding to
the cis conformation. This cis conformation in some
Pro residues is ignored in the definition of the main-
chain conformation class.

The distribution of (@, ¥) pairs obtained from the
protein structures in the Brookhaven Protein
Databank shows six different peaks (Fig. 3, Wilmot
& Thornton, 1990). They correspond to right-
handed o-helix (A), idealized f-strand (B), poly-
proline conformation (P), the & region accessible
primarily Lo Gly residues with positive ® angle (G),

*, extended chain) and other (T, turn;

Table 4
Parameters of the main-chain conformation classes

Mean {°) Standard deviation (°)
3, ?; a (D) o, (¥)
A —635 —4] 15 15
B — 130 135 15 20
P — 65 140 15 15
G 60 40 10 14
L 90 —10 15 10
K 130 180 25 25

Approximate mean values and standard deviations are given
for each of the § main-chain conformation classes.
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left-handed o-helix (L.}, and extended conformation
(E). These six peaks represent six different con-
formation states of the main-chain of a particular
residue. The whole of the plot can therefore be
divided into six areas centred at those peaks
(Fig. 3). The approximate mean values and stan-
dard deviations of the main-chain dihedral angles in
each of these six classes are listed in Table 4.

Fractional content of residues in the main-chain
conformation class 4. This feature is introduced to
describe the structural classes of proteins that differ
in the relative contents and distribution of helices
and strands (a, §, a/f, a+f). It is defined as the
fractional content of residues in the main-chain
conformation class A,

Side-chain dihedral angles y,, x5, x; and x,. The
TUPAC definition of side-chain dihedral angles
(Kendrew et al., 1970) is adopted with the exception
of the y, angle of the residues with ', symmetry
around the C#~C¥ bond (Asp, Phe and Tyr). In these
cases, the y, dihedral angle is calculated using the
atom that happened to be labelled C*' in the
Brookhaven file; if the angle is smaller than 0°, it is
increased by 180°. Similar considerations apply to
x3 ot Glu. Thus, the absence of any significant differ-
ence between the angles —a and —a+180°, i.e. the
C'; symmetry, is properly reflected in the equality of
the y angles for the two cases. Pro residues are
considered to have a rigid side-chain with yx; angle
of 29° and are neglected in this analysis.

Classes of side-chain dihedral angles y,, i3, x5 and
*4. Tt is well known that the y; angles for most
residue types follow trimodal distribution with

peaks at approximately 60°, 180° and —60° (Janin
et al., 1978; Ponder & Richards, 1987), These distri-
butions can be used to assign a particular side-chain
dihedral angle to one of the three classes, +, t and
—, respectively, grouping all the values in one peak
to one class (Table 3). There are exceptions that do
not follow this trimodal distribution; they include
the y, angles with a trigonal ¢V atom that are
distributed bimodally {(His, Trp) and monomodally
(Phe, Tyr, Asp), as well as the trimodal distribution
of Asn with unique positions of the maxima
(Table 5; Sali, 1991).

Restdue solvent accessibility. Absolute or fractional
contact areas (Richmond & Richards, 1978) for the
side-chain, main-chain or a whole residue can be
used. These areas are calculated by the program
PSA as described by Hubbard & Blundell (1987).
The fractional area is obtained by dividing the
contact area of a given residue by the standard
contact area of the corresponding residue type X in
the extended tripeptide Gly-X-Gly.

Difference between two equivalent residue neighbowr-
hoods in two proteins. The difference between two
equivalent residues, one from each protein, is
defined as follows. First, all neighbours of the
residue in structure 4 are found. Then the squiva-
lent residues in structure B are obtained using the
alignment between the two proteins. The sum of the
residue-residue dissimilarity scores is then calen-
lated for these pairs of equivalent residues.
Dissimilarity scores from the residue type matrix of
COMPARER were used (Sali & Blundell, 1990).
Next, a gap penalty (usually 2) is added to this sum

Table 5
Definition of the x ;, ¥ 2, ¥ 3 ond y 4 side-chain dikedral angle classes

Range Mean  Standard deviation
¥ type Residue types Class ) ¥ (%) o) (%)
X1 CDEFHIKILMNQ + [0, 120] 63 10

R.ST VW Y

t [120, 240] 180 10

- [—120, 0] —63 10

X2 E.LKLMQR + [0, 120] 65 10
¢ [120, 240] 180 10

- [—120,0] —63 10

D 1 [0. 180] 0 25

N 1 [—180, 0] —50 10

2 [0, 80] 10 10

3 [80, 180] 140 10

H W 1 [—180, 0] —75 10

2 [0, 180] 75 10

F. Y 1 [0, 180] 75 10

i3 K, MR, Q + [0, 120§ 65 10
t [120, 240 180 10

- [—120, 0] —65 10

S 1 [35, 83] 60 15

2 (85, 395] 180 35

Xa K + [0, 120] 65 15
i [120, 240] 180 15

- [—120, 0] —65 15

R + [0, 70] 45 10

¢ [70. 255] 170 35

— [—105, 0] —80 10

Approximate mean values and standard deviations for each peak are also given. See Sali (1991) for
histograms of y; for each residue type that result in these definitions of the classes.
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where there is a deletion in structure B: this defines
the total score. The difference between the residue
neighbourhoods of the two proteins is then calcu-
lated by dividing the total score by the number of
residues in the neighbourhood of the residue in
protein 4. If there are no neighbours in protein A,
the difference score is (. Three parameters have to
be specified to define precisely the neighbours of a
residue in protein A: the atoms used to search for
contacts, the cutoff for the contact distance, and the
number of atom—atom contacts required to have a
reridue-residue contact. Usually, all the atoms of a
residue, a contact distance of 60 A and one atom-
atom contact are used.

Average residue neighbourhood difference between
two proteins. This quantity measures the difference
between two proteins in the neighbourhoods of the
two residues that span a certain distance. Tt is the
average of the individual residue neighbourhood
differences defined above.

Fractional sequence identity between two proteins.
Ttis relationship is defined as the number of pairs of
identical residues in the alignment divided by the
length of the shorter protein sequence.

Difference in two C"-C* distances in two proteins.
This is a double relationship: it is defined as the
difference between the equivalent distances in two
related proteins. The distances are equivalent only
if both the first and the second atom defining the
distance in the first protein are equivalent to the
first and the second atom of the distance in the
second protein. A similar difference is defined for the
distance between the main-chain N and () atoms.

Average residue isotropic temperature factor, B,
B;, values are read from the co-ordinate file when
przsent. The average is calculated for side-chain
atoms only; C* atom is included in the side-chain to
obtain a value for Gly. If there are no B, values for
a certain residue in the co-ordinate file, the residue
is assigned the ‘‘undefined’” value. This feature
separates well-defined parts of a molecule from flex-
ible or undetermined parts.

Resolution of the X-ray analysis. This is obtained
from the co-ordinate file as distributed by the
Brookhaven Protein Databank.

Distance of a residue from a gap. For each residue
in the pairwise alignment, this is defined as the
number of positions from this residue to the closest
zap. For a residue aligned with a gap. it is 0; for a
residue next to a gap, it is 1, ete. Since the structure
varies more when closer to a gap in the alignment,
this feature can be used to describe the structural
variability.

Average distance of an intra-molecular residue pair
Jrom a gap. 1t is defined as the average of the two
residue distances from the closest gaps. This feature
can be used to describe the variability of the
distance spanned by the two residues.

{2} Calculation of a probability distribution from a
sparse data set
Calculation of probabilities W from frequencies
W’ (eqn (4)} is strictly valid only when the frequen-

cies are very large. Unfortunately, the limited size
of the database usually results in a sparse matrix
W' and, consequently, in significant errors in some
of the estimated probabilities. This section describes
the procedure that can reduce the problem of a
sparse data set.

We extend the treatment of sparse data sels that
was proposed by Sippl (1990). The original method
is briefly described as follows. Suppose we are
interested in a discrete prohability distribution of a
random variable z. We can imagine calculation of
the probability distribution in a stepwise process, as
an alternative to equation (4). Each step is asso-
ciated with a single measurement that contributes
one data point to W'. We start with an a prior
probability distribution, such as a uniform distribu-
tion, and then allow every measurement to perturb
this a priori distribution so as to make the measured
event slightly more likely. The resulting perturbed
distribution is used as the a priori distribution for
the next perturbation step. Exhausting all the
measurements leads to the final estimated prob-
ability distribution p. This iterative procedure can
be written as a single operation (Sippl, 1990):

plx;) = o d(x) +w, Wiz,) (5)

with weights
1

o, = L4 ¥ jon) and @, = 10w, {6)

where NV is the number of points in W', n, is the
number of bins, ie. i=1,2, .. n.. and ¢ is a para-
meter that determines the relative contributions of
the a priort distribution A and a measured distribu-
tion W to the final estimate p. When & is large, the
a priori distribution has a negligible effect on the
smoothed probability distribution p; in this case, p
is determined by experiment alone and equations
(5), (6) are equivalent to equation {4). On the other
hand, when N is small, the estimate p depends on
the a priori distribution as well as on the experi-
ment. Thus, an estimatle of p is robust since the
sparseness of data cannot introduce large deviations
from the a priori distribution; it is also unhiased
since, for a small N, the a priori distribution is
unbiased and, for a large N, p is reliably determined
by experiment alone. When the average number of
data points per bin is o, the a priori and experi-
mental distributions contribute equally to the
smoothed estimate p. This elegant smoothing
procedure was successfully used to derive robust
potentials of mean force (Sippl, 1990).

It is possible to extend this idea to multi-
dimensional frequency tables used here. For
example, suppose we want to obtain probabilities
for the occurrence of any of the three classes of the
71 dihedral angle {(+.{, —) in proteins. Additionally,
we want to obtain this distribution for each residue
type separately. In other words, we want to esti-
mate the conditional probability distribution
p(x:/r;), where y; and 7; stand for the class i of a
side-chain dihedral angle (3 values) and residue type
J (20 values), respectively. According to equation
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{3), the elements ¢ of the smoothed conditional
distribution for each residue type § are:

Plxfr) = w{A(x,—fr}-)+m{,_ Wixifr). (7)

The only problem now is to find the best a priori
distribution A. One possibility is to use a uwniform
distribution. However, the distribution of ¥, angles
irrespective of the residue type is, on the average, a
better a priort digtribution than a uniform distribu-
tion. So we set:

AQilr) = px) (8)

for all j. p(x;) could be determined directly from the
observed frequencies W' {eqn {4)), but a more
robust estimate is obtained by applying the
smoothing operator again:

Pt = w1 A(x) +wa Wix,) {9)

with a proper set of weights ¢, and with the uniform
distribution as the @ priori distribution, ie. A(y,) =
1/n,. Now we have all the quantities to calculate
Pt/

The following is a rigorous definition of the
smoothing procedure for the relative frequency
table W’ spanned by one dependent and N —1
independent variables. There are N sta%es which
can be seen as a build-up of the final p" starting
with p1 or, alternatively, as a recursive evalnation
of p* from p¥~!, p¥ 2, ete. y; stands for any of the
possible values of the variable y, and g/ for the ith
value of the variable y; Therefore, p{x;/y) is a
scalar, p(x/y;) is a vector, and p(x/y) is a matrix.

Each stage n consists of the following operation:

RIS R S B
w{k"'lA"(l'i/y}’ yf, e y?'l)
+w£k...lw'n(xl_/y}! yf, . y?il)s {10)

where p" is a conditional probability for x;, given
that the independent variables assume wvalues
Y .ye, ... yi~'. W" is the corresponding condi-
tional probability determined from the observed
frequencies W' using equation (4), more explicitly
written here as:

W fy) mir - o di )
) W™a ul s our )

yn‘yn‘#l“_"y!\'—l
= (11
W™@, yps Yics -y ) ()

x.y",y"*i,.,.,y""-l

The @ priori distribution A" is calculated as a
weighted average of all p"~*:
A"@fyp e YT =2 eplTh Yee=1. (12)

[ <
where the sum runs over all possible combinations
of n—2 independent variables with their values set
to a subset of yj,yi. ...y ", If there are N—1
independent variables in total, there are (N —1)!/
MIN =1} —(n—2)]1(n—2)!} different combinations
of »—2 variables, each combination corresponding
to one term of the sum in equation (12}. The

following rationale was used to calculate weights p,.
Suppose the independent variables y!, 42, ..., ¥}~
in a particular p*~! do not provide any additional
information about the value of . Then this p"~!
should not be used at all in the calculation of A"
Conversely, the more x depends on the variables in
p" !, the greater should be the weight p, for this
p"~! in the calculation of A®. A convenient measure
of the dependence of x on the independent variables
is the entropy of p*~', defined as:

80" ==Y " Myl vE D)
3

xlogp" Mafyj yi - Wi (13)

The maximum of entropy, 8., =logn,, corre-
sponds to a uniform distribution. In such a case,
independent variables contain no information about
x. Therefore, p. can be defined as:

(Smax_Sc)
= . 14
Pe Z (Smax _Sc) ( )
[

The iterative smoothing procedure is started by
setting =1 and A® {o a uniform distribution,
A%x;) = 1/n,. Tt is finished when n=N.

Performance of the smoothing procedure in one
simple application is illustrated in Figure 4. The aim
is to find the distribution of a x, side-chain dihedral
angles for each residue type; the Cys and Ser
residues are used as two typical cases.

First, a small database of only eight proteins
{1245 residues with yx, dihedral angles) was used to
derive the distribution of the y, dihedral angle for
the Cys residue (Fig. 4(a)). Since only 11 Cys
residues exist in this small database. the distribu-
tion is very sparse and large errors are likely to
occur, On the other hand, when the whole local
database of 80 proteins is used for the same purpose,
a dense and reliable distribution consisting of 297
Cys residues is obtained (Fig. 4(c)). These two distri-
butions can be compared with the distribution
smoothed as described above (Fig. 4(h), ¢ =5). The
comparison clearly shows the improvement due to
the smoothing procedure. The improvement was
possible because Cys has a typical x, distribution.
Consequently, information provided by other
residues improves the estimate of the Cys
distribution.

The second set of histograms (Fig. 4(d) to (f)}
shows the corresponding distributions for the Ser
residue. This example shows that even when the
distribution to be determined (Fig. 4(f)) i1s very
different from the average distribution (approxi-
mated by TFig. 4(c)), the smoothing procedure
performs satisfactorily, provided that the original
dataset (Fig. 4(d)} is not too small.

The third kind of situation is when an atypical
distribution has to be obtained from a sparse data
set. Since this would require a creation of informa-
tion from nothing, as opposed to the best usage of
the available information, it is e¢lear that no
procedure exists for such a task.
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Figure 4. Smoothing sparse distributions of y, side-chain dihedral angles. (a) A distribution of x, angles of 11 Cys
residues obtained from a small database of 8 proteins, totalling 1245 residues with x, side-chain dihedral angles. The
prateins are 4hvp, 2rspa, 4ape-n, 2app-n, 2apr-n, 3ems-n, 5pep-n, 2apr-c¢ {see Table 1 for the protein names). (b} The
smoothed Cys distribution obtained from the small database of 8 structures. The smoothing parameter ¢ was 5. (¢) The
“raliable” non-smoothed distribution of C'ys ¥, was obtained from the whole local database of 80 protein structures. This
distribution consists of 297 Cys residues. (d) 138 Ser residues in the small database. (e} The smoothed Ser distribution.

(f} 923 Ser residues in the large database.

(d) Strength of assoctations among the features of
protein structure

We distinguish between the significance of an
association between two or more features and the
strength of such an association. An association may
be significant if it is based on a large amount of
data, vet still weak if the values of independent
features do not provide strong restraints on the
dependent feature. The significance is measured by
the x? test, while the strength is measured by the
entropy of the conditional pdf (Press et al., 1986).
We also distinguish between accuracy and precision.
A prediction is precise if the differences between
independent realizations of this prediction are small,
yvet it may still be inaceurate if the mean is very
different from the true value.

The most useful pdf for modelling is that which
predicts the unknown feature most accurately.
Provided that pdf values are not constructed from a
sparse and non-representative database, the most

precise pdf is on the average also the most accurate
pdf; therefore, the most accurate pdf is the pdf with
the sharpest shape. A quantitative measure of
sharpness is entropy of pdf:

Slplxr}] = — J plnpdz, {15}
and for a discrete probability function:
{16)

S(p(@)] = =) pla) In play).
For a discrete conditional probability function,
entropy is defined similarly as:
S[plala. b, ... e)]
= Y pla.b, ... oSplzfa,b, ... o)l

a b, ..., c

(17)

Thus, to find the best known features {a., b, ..., ¢}
for prediction of the unknown feature x, we search
for the features that minimize entropy S of a corre-
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sponding conditional pdf. A convenient measure
of how much the independent features determine
the dependent feature is given by the uncertainty
coefficient of x (Press ef al., 1986):

_ S[p(z)]—S[p{xfa. b, .. ., )]
S[p()] '

This measure lies between 0 and 1. The value 0
means that x is not associated with (e, 5, ..., ¢), and
the value 1 implies that {a,b,...,¢) completely
determines z.

Ulzfa, b, ..., c)

(18)

(e) Stereochemical restraints

All stereochemical restraints are easily obtained
from the amino acid sequence of a protein, Stereo-
chemical restraints used here include bond
distances, bond angles, planarity of peptide groups
and side-chain rings, chiralities of C* atoms and
side-chains, van der Waals contact distances and
the bond lengths, bond angles and dihedral angles of
cystine disulphide bridges.

The mean values and standard deviations for
bond lengths, bond angles and dihedral angles are
obtained from the GROMOSS6 IFP37C4 parameter
set (Berendsen et al., 1984) which, in turn, are
derived from the values found in small molecules
from X-ray crystallography, spectroscopic studies
and theoretical calculations. The van der Waals
radii are also ohtained from the atomic radii in the
GROMOS parameter set by multiplication with a
constant factor (usually (-82).

(1) Bond lengths, bond angles and dikedral angles

The classical harmonic model for the bond length
between two atoms gives the vibrational potential
energy of the bond as:

E(b) = Jeib—b,)". (19)

The prebability density function for the bond
length is then found, from classical statistical
mechanics, to be a Gaussian probability density
function (Hill, 1960):

1 1/b—F\? -
P = Oy 2T exp|:— E( oy ) :| R
b

where 6, = /&Tjc and b =b,. Only two parameters,
the mean (b) and the standard deviation (6,), are
needed to describe this distribution.

The derivation of the pdf for the bond angle is
equivalent to that for the bond length. The final
result iz again a Gaussian pdf p*a)= N(&, g,).
Similarly, a monomodal pdf for a torsional or an
improper dihedral angle ¢ is N(&, g,). The mono-
modal pdf N(E, 6;) is used to restrain several
different features of protein structure, following the
use of a harmonie potential for restraining improper
dihedral angles in GROMOS (Berendsen et al.,
1984). They include peptide and ring planarities,
and chiralities of C* atoms, Thr and Tle side-chains.

To allow for the cis-peptide conformation, the
main-chain dihedral angle & may be restrained by a

sum of two Gaussian functions:
p?=w, N(180°, 6°) +w,.N(0°, 6°); w, +w, =1.{2])

If not specified - otherwise, weight w, is set to 0,
corresponding to the frans conformation.

(ii) van der Waals repuision

van der Waals repulsion iz the only stereo-
chemical feature which is not described by the
harmonic model. Instead, the following pdf is used
for two atoms;

N(do! gw); dsdo

1
gw\/g d, <d < dpa,

where d is the distance between the two atoms, d, is
the sum of their van der Waals radii and o, is the
standard deviation of the Gaussian part of the
whole pdf (usually 0-05 A). d_, is the maximal
possible linear dimension of a protein and constant ¢
is chosen so that p"(d) integrates to 1. This pdf does
not differentiate between contact distances larger
than d,, but it does select against distances smaller
than d,. This is achieved by imposing a repulsive
harmonic potential on atoms that are less than d,
apart.

pidy=c (22)

(ii1) Disulphide bonds

The disulphide bond restraints reflect only the
generally allowed stereochemistry of disulphide
bridges {Thornton, 1981}); they do not automatically
take into account the geometry of equivalent
disulphide bonds in related proteins.

First, disulphide bonded pairs of Cys residues in
the sequence to be modelled have to be specified.
Then the geometry of the disulphides is restrained
by the mean values and standard deviations of
Gaussian pdfs for distances and angles taken from
the GROMOS IFP37C4 force field. Additionally, the
pdf for the CF-S-S-Cf dihedral angle, which has
been obtained from the disulphide bonds in high
resolution protein structures {Thornton, 1981), is
used. The distribution of this dihedral angle is
bimodal with peaks at —87-1° and 93-9° with stan-
dard deviation of 10°. Correspondingly, the dihedral
angle is modelled by a weighted sum of the two
Gaussians with both weights equal to (-5 if not
specified otherwise.

{f) Restraining a distance between two C* atoms

The unknown feature is defined as the difference
between two equivalent C*-C* distances, d—d'; d' is
from the “known’ or template structure and  from
the “unknown’’ or target structure, As described in
general terms in subsection (b}, (iii}, above, the local
database and the MDT program are used to find the
distribution of d—4’ as a function of four indepen-
dent variables: the corresponding C*~C* distance in
the known structure (d'), the fractional sequence
identity of the two aligned sequences (i), the
average of the fractional solvent accessibilities of
the two residues spanning the distance in the known
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Table 6
Derivation of the distributions for the C*—C* distance and the main-chain
N0 distance

No. of
Feature Symbol Start End Interval intervals
Average distance from a gap ] 0 20 i 6
Fractional sequence identity i 0 1 02 5
Average residue aceessibility (%) it 0 Lo 20 5
Distance (A} d ¥ 5 30 5 5
Distance difference (4) d—d'. 70 70 05 28

h—H

Ranges used for the tabulation of the distributions W(d—d'/g. i, &, d") and Wh—A'fg.i @' }') are

shown.

* The intervals for g are 0 to 2, 3. 4 to 5, 6 to 9, 10 to 16, 17 to 24

structure (a'), and the average distance from a gap
of the residues spanning the distance (7). Details
about the values of these variables are given in
Table 6.

Dependence of the C"-C* distance difference on
the other four variables is quantified in Table 7. The
larze decrease in entropy from 4-372 to 2-620
when going from p(d) to p(d—d’) is a result of
the similarity between related structures (Table 7).
A further decrease of entropy to 2:479 when the four
independent variables are added to p{(d —d’) is small
bu~ still significant, The strongest influence on the
distance difference by a single feature is exerted by
the fracticnal sequence identity and the average gap
distance, but the accessibility and the magnitude of
the distance are also important.

fixamples of the histograms of probability distri-
hutions obtained by the MDT program are shown in
Figure 5(a) and (b). These histograms demonstrate
that the conditional distribution of the distance
differences may be approximated by a (aussian
function with a mean of zero and a standard devia-

tion dependent on the values of the independent
variables. Therefore, the pdf restraining a C*-C*
distance in the sequence of an unknown, given an
alignment with a single related known structure,

can be modelled as:

pldfg.i.a d") =

Table 7
Strength of associations between the dependent and independent features in the
distributions of the ("™ and main-chain N-O distances

1

6. i, &, d')/2n

y N od-d Y
P T o\ g, i@ )

olg, i, &, d)y=0o, ‘o, g+asito,d +ougd

+ g G? + ar §i+ g Gl + dogd’
oot oy il oy, id oy @
+’114&-'d’+a15d,2+a15§’3+’117£-]2?:
+“18§25’ +“19§’2d" '*'0‘205’1'2

0ty Jit + 0y, gid 05,502
+opga’d +a25§d’2

t 0l 002 F g itd Foygta
+oggid oy, id? +oy,a
tayyatd +aya'd Fayed?. (23)

2

2

r=d

r=h

(C'onditional

entropy 7

Entropy 8

Conditional
entropy {7

pdf Entropy &
Uniform p(x)* 5298
pli) 4-372
Uniform p(r—£)® 3332
ple—ux'} 2620
pla—=2'f) 2539
pla—x'lg) 2-568
ple—ix'fa) 2-605
ple—x'fa'} 2-606)
ple—x'fg, i, d',x) 2479

5298

4-333

3332
00000 24657 00000
0-0301 2:582 00286
00190 2605 00195
0-0047 2-646 00041
Q-0067 2-643 0-0054
00527 2:527 0-0493

* A uniform distribution with the same number of bins {200) as the p(x) distributions. These
distributions also have the same bin width (-5 A} as the plx—x"/a. b, .. .) distributions.

® A uniform distribution with the same number of bins (28) as the p(x—x'fa, b, . . .) distributions. The
entropies {eqn (17)) and conditional entropies {eqn (18)) for the non-smoothed pdfs are shown. The
smoothed pdfs (¢ =20) have similar values, the largest difference occurs for the most sparse
WS[p(d—d'/g, i, a', d')] = 2398 and 2479 for the smoothed and non-smoothed pdf, respectively. This
small difference implies that the pdfs can be determined accurately from the non-smoothed histograms

because the database is not sparse.



792 Comparative Protein Modelling

40019 =2-3
a'=06-08 ﬁ‘“\‘ @)
d =15 - 20A
: N = 5475
5‘ 300-i =00-02 Z 5 ¢ =2.82A
c
3}
=
o
o

2 4 6
[A]
1000 9-0-18 {b)
a=00-02
800 {d'= 10- 154 N =2110
o i =06-08 o =041A
2 5001
1]
3
8 4001
2001
0 r

6 4 2 0 2 4 6
d-d [A]

700{g -2-3 (c)
a'=06-038
600 1 h' = 15 - 20A N = 9701
> 50041 =00-02 o =293A
& 4001
3
43' 300+
~ 2001
1001
0 !
6
[A]
g=9-18 (d)
la=00-02
1600 h' =10 - 15A N = 4008
- i =06-08 o =0.42A
© 12001
o
D
=3
g 800 A
400 -
0 y r

6 4 2 0 2 4 &
h-ht [A]

Figure 5. Distribution of the differences between 2 equivalent distances. The histograms show the frequency of the
differences between 2 equivalent distances as observed hy MDT in the local database. (a) and (b), C*-C* distances; (c¢) and
(d), main-chain N-0O distances. The curves are fitted Gaussian models (eqns (23) and (24)). The values of the dependent
variables, the number of C*~C* distances in the database (¥) and the standard deviation of the Gaussian model (o) are

shown for each histogram.

If 3> 20, § is reset to 20. In relation to equation
{23), the four features can be seen as the measure for
the degree of transferability of the distance from the
known to the unknown structure; the distance in
the unknown is more likely to be closer to the
equivalent distance in the known when the distance
is short, the two residues spanning the distance are
buried, the two structures are similar overall, and
the residues are distant from the gaps in the
alighment.

The remaining problem is to determine the best

values of parameters «;. This is achieved by least-
squares fitting {subsection (b)(i), above) the model
p? in equation (23) to the histograms W obtained
from the database scan {Table 8). The Gaussian
conditional pdfs p*(d/7, i, a, d’), calculated from the
least-squares parameters, are superposed on the
experimental histograms in Figure 5(a) and (b).
These plots provide additional graphical evidence
that the Gaussian model can describe the associa-
tion between the unknown C*-C* distance and the
four independent variables included in this analysis.

Table 8
The best parameters for restraining C"—C" distances (d) and main-chain
N--O distances (h)

o(F. i a’. d') = 0849 — 20335 — 1-227¢ + 0-971a@ + 1-467d" + 13827 + 1-5395 — 0-504ga’ — (25954
+2:412i% — 1-496ia" — 3-094id’ — 042502 + 06707 d’ — 0- 15942 — 0-3075° — +2135%
+0-0883%" +0-0205%d’ — 0-0697i% +0-453§a 4+ 0-1775id’ — 0-058a° — (-0425a"d’
+0:020gd 2 — (-847:% +0-055¢2a + 1-5468%d’ + 0062Tia’? — (0-220da'd" + 0-254id"? + 0-066a"

+0-153a%d —0-153a'd"2 — 0001943

{36)

6. i @ k) = 0957 — 20445 — 1-078i 4 (+095&" + 1-477H + 1-572F% + 1-1485i — 0-5255a° — 0-4837h"
+ 1505 —(-655ia" — 2-849ik — (r625a" +0-4997° K — 0r 126" —0-3697° — 0-2435%
+0r121g%a’ + 0087528 — 0-592§1% + 0-3467ia" + (+276gih — 0:032a2 — 0-0617a' ' + 0-036gA™
—O-3200° — (31820 + 1-4720%0 + 0-28443°2 —O-293i k" + (- 198102 + 0-38232 +0-1 10224

—0079a'h'2 — 0009542

(37)

Full expressions for the standard deviations of the Gaussian p models for W {eqns (23} and (24)) are
given. Before using g, @’ and ¢ with the parameters shown, they have to be scaled by 0-1. 0-01 and 0-1,
respectively. The r.m.s. deviations hetween the p models and W’ are 00524 and (000441 for ¢ and #,

respectively.
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Figure 6. Distribution of the ¥ main-chain dihedral
angle at ®=[—80° —70°]. The table WY{D. ¥) was

obtained from the local database of protein structures.

(2) Restraining a distance between main-chain N
and O atoms

The N-O distance in the target protein was
mcdelled in the same way as the C*-C* distance
above:

1

a(d, i, @, k)/2n

=t V]
xexp\ —ol s na ) [

The dependence of the N-O distance on the other
four variables is quantified in Table 7. The values of
the parameters «; obtained from the least-squares
fitting of the model to the probability distribution
histograms are given in Table 8. Examples of
experimental histograms overlayed with the analy-
tical curves are shown in Figures 3(c} and (d); they
demonstrate that this model s appropriate for
restraining N-O distances, The trends observed for
the C*-C* distance are also valid for the N-O
distance. Note that the variability of the main-
chain N-0O distances is similar to that of the (*-C*
distances (Fig. 5, eqns (36) and (37)).

p(hig. i a b)) =

(h) Restraining residue main-chain conformation

A sample distribution of the ¥ dihedral angle
when the ® dihedral angle is in the range from —80°
to —70° is shown in Figure 6. The two peaks corre-
spond to the A and P main-chain conformation
classes (Fig. 3). This figure indicates that within
each of the six classes, A, B, P, G, L. and E (sub-
section (b)(iil), above), the distribution of the main-
chain dihedral angles approximates the Gaussian
distribution. The means and standard deviations for
the @ and W angles within each conformation class
arc estimated in Table 4.

Suppose we can predict the probability «; that
the restrained residue is in the main-chain con-
formation class ¢. Then the two pdfs restraining @
and W dihedral angles can be modelled as a
weighted sum of six Gaussian functions, each fune-
tion corresponding to one of the main-chain con-

formation classes A to E and weighted by a
probability that a residue is in the corresponding
class:
Pr® = Y N, o))
i=4,...E 25
p"(¥) = z w; N['¥;, a,('F)].

i=4,...E

where N («, ¢} stands for a GGaussian pdf with mean a
and standard deviation g {Table 4). Note that this
scheme takes advantage of the fact that ® and ¥
angles are highly correlated (Fig. 3). The remaining
problem is to determine the probabilities w; of all six
main-chain conformation classes for each restrained
residue. The local database of alignments and the
program MDT were used to establish these weights.

The build-up of the pdfs for the main-chain con-
formation class and for the side-chain conformation
class below concentrates only on what is best overall
for comparative modelling. No attempt is made to
explain the results, to concentrate on individual
residue types, or to optimize the pdfs beyond the
optimal selection of the currently defined features.

The whole local database was divided into a
learning part and a test part. The test set consists of
seven serine proteinases and the learning database
includes the remaining 16 protein families. The
serine proteinases of the test set, tonin, kallikrein,
trypsin, chymotrypsin, elastase, rat mast cell
protease II, and 8. griseus trypsin, have had strue-
tures determined at a resolution of 2 A or better
(Table 1). This test set contains 21 pairs of related
proteins, 1608 residues and 5586 pairs of equivalent
residues. Fven though serine proteinases beong to
the f class of proteins, the content of the six main-
chain conformation classes 1s not significantly
different from that of the whole local database; 439
of the residues in the whole database are in the A
conformation, as are 289, of the test set residues.
The pairwise sequence identities in the test set range
from 27 to 5539,; the average is 354 9.

The protein features that may correlate with the
main-chain conformation class of a restrained
residue were then selected from the list in Table 3.
These are the types of the restrained and equivalent
residues and the features that can be classified into
the following three groups: main-chain conforma-
tion of an equivalent residue (M, ', @', V', &), side-
chain  conformation of an equivalent residue
(€], 5, £5), and variability measures (s, ¢, &', ', g, R')
{Table 9). The non-smoothed and smoothed (o =5)
pdfs of the form p(M/a, b, ... ¢) were derived from
the learning database for the 7249 possible combina-
tions of up to five selected features (a, b, ., , ¢} listed
above. Each of the resulting pdfs was evaluated by
predicting the most likely main-chain conformation
class for cach residue in all the 5586 equivalent
residue pairs in the test set and by comparing these
predictions with the actual conformations found in
the crystallographic structures (Table 10).

If only the probabilities p(M) of the six different
conformation classes are used in the prediction, the
prediction success is 27-99, (Table 10), because that
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Table 9
Features used in the derivation of the distributions for the main-chain conformation
class M and side-chain dihedral angle classes ¢,

Type of No. of
features Feature Symbol Start End Interval  intervals
Residue types rr — —_ — 20
Main-chain Main-chain conformation
classes M, M — - - 6
Secondary structure type 4 - - 4
@ Dihedral angle @ 0 360 20 18
¥ Dihedral angle P 0 360 20 18
Content of the A class o 0 10 02 5
Side-chain i Classes ¢, ¢ — — — 3
Variability Distance from a gap g 0 [ 2 5
Resolution of X-ray
analysis Vid 0 e v 4
Residue neighbourhood
difference s 0 2} 04 5
Average side-chain B, o 0 75 15 3
Fractional sequence
identity i 0 1 02 5
Side-chain accessibility (%) o 0 125 25 1

The Table shows the ranges used for the tabulation of the distributions W{M/a,b, ..., ¢) amd
W(e,fa. b, . . ., c¢). Note that the prime in the feature symbol indicates that the feature is obtained from

the template structure, not the target structure,

* The intervals forgare Oto 1,2, 3to 4, 5t0 6, 7 to co.
® The intervals for £ are 0 to 16, 16 to 2:0, 20 to 2-5, 2-5 to oo.

many residues are in the most likely A class. This
success is improved marginally by 539 when the
residue type is taken into account [p(M/r})], due to
the preference of Val and Tyr for the B class and

Table 10
The build-up of the pdf for prediction of the
main-chain conformation

Entropy % Correctly predicted
pdf Non-smth  Smth Non-smth  Smth
Uniform pdf 1-792 1792 167 167
(M) 13169 13208 27.9 279
piMir) 11549 111840 332 332
(M) 12124 b2136 HEXL 54-0
p(MIM 1-3330 13348 T0-2 702
M T) 10172 10489 584 584
pMIMr 1-0333 1- 1466 72-6 72-5
p(MIM v, 8} 07504 12118 T35 733
p(MIM v i) 07172 11838 76-3 76-1
p(MiM r ) 0-7926 1-1419 724 723
p(MIM r b 07014 11579 T TI
p(MIM r &) 07332 1-2113 71-4 71-3
p(MHIM v R 08813 1-1848 717 718
p(MIM r.g) 07929 1-1810 74-0 737
p(MIM 7 ) (8350 1-2424 720 7149
PIMIM v 5.q) 05441 12321 729 738
pMIM v g) (5328 12348 720 733
MM . r a8 5168 1-2593 72:0 732
plMIM v ¥, cY) 0-4656 1-2035 689 715

Non-smth, non-smoothed pdf, 8mth, smoothed pdf {(¢=235).
A prediction is correct when the most likely conformation
obtained from the pdf matches the erystallographically chserved
vonformation. Results for 4 and 5 independent features do not
improve the prediction success which remains at around 739,.
Only a small sample of the total of 7249 different pdfs is shown.
See Table 9 for the description of the variables.

Pro for the P class. However, the largest improve-
ment due to a single feature is provided by the
main-chain conformation class of the equivalent
residue [p(M/M")]; this increases the prediction
success from 2799 to 70-29,. When the residue
type and the equivalent main-chain conformation
are combined in p(M/r., M'), the prediction success
rises to 72:59,. This is then increased by up to 3-69;
when a variahility measure, such as the fractional
sequence identity or local similarity, is also taken
into aceount. The effect of this measure is that the
pdf relies more on the residue type when similarity
is low and more on the equivalent main-chain con-
formation when similarily is high (compare Figs 7(¢)
and (d)). Information about the conformation of
an equivalent side-chain does not increase the
prediction rate.

The comparison of prediction successes of the
non-smoothed and smoothed pdfs shows that
smoothing does not improve the prediction success
if three or less independent features are used
(Table 10). However, the comparison of entropies
for the smoothed and non-smoothed pdfs indicates
that whereas the most likely conformation may well
be predicted correctly by the non-smoothed pdfs,
the errors in the weights for the other less likely
conformations are expected to be smaller after
smoothing.

The smoothed pdf p(M/r, M’ s) was selected for
the subsequent calculations of weights c; that are
needed to restrain the main-chain dihedral angles @
and ¥ (eqn (25)). Residue neighbourhood difference
s is the most appropriate variability measure
because it consistently leads to high prediction
scores for different test sets (data nor shown).
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Figure 7. Sample cross-sections through the pdf for prediction of main-chain conformation. The probabilities
W(M/M  r.s) for conformation classes A to E of a given residue type (horizontal row, M) are shown for each
conformation class of an equivalent residue (vertical row, M), The type of a restrained residue (r). and the local

neighbourhood difference (s) are shown above each plot.

A cross-section through pdf p(M/r, M’ &) is
shown in Figure 7. The prediction success of this pdf
on the test set of seven serine proteinases is listed
for the individual residue types in Table 11. The
residues that are predicted most accurately (approx.
859,) are Trp, Gln, Pro, Phe and Cys, whereas the
least accurately predicted residues include Gly, Asn,
Gl and Leu {approx. 639%). This trend probably
reflects the distribution of the various residue types
in the core and on the surface of the molecule as well
as the degree of restraint on the main-chain
provided by its side-chain. The conformation of the
core residues is expected to be more conserved, and
therefore better predicted. than the conformation of
the exposed residues. Likewise, the conforma-
tionally restrained residues, such as DPro, are
predicted better than those that are more flexible,
such as Gly. Leu is not predicted reliably because its
intrinsic preferences for the A, B and P classes are
ve-y similar.

While the 739, prediction rate may seem low,
many errors occur because of the swapping between
the structurally similar (B, P} classes as well as
besween the (L, (5) classes. When these two pairs are
treated only as two classes, the prediction suecess
inereases to 87-49%,.

(i) Restraining residue side-chain conformation

A large amount of information exists about what
dezermines conformation of side-chains, Tt has been

known for a long time that different side-chains
have specific preferred values for their dihedral
angles {Janin et af., 1978; Ponder & Richards, 1987).
More recently, there have been extensive analyses of
the dependence of side-chain conformation on the
conformation and type of an equivalent side-chain
in a related structure (Summers & Karplus, 1989;
Butcliffe et al., 1987h), solvent accessibility (Schiffer
et al., 1990; Summers & Karplus, 1989), hydrogen
bonding (Summers & Karplus, 1989), secondary
structure (McGregor ef al., 1987; Sutcliffe ef al.,
19878), main-chain conformation (Dunbrack &
Karplus, 1993), and close packing (Desmet et al.,
1992: Holm & Sander, 1992; Lee & Subbiah, 1991;
Tuffery et al, 1991). The close packing criterion
cannot be included in the derivation of restraints
formulated as pdfs, but it is satisfied to some degree
in the final modelling stage when all restraints are
optimized simultaneously (section 3). Likewise,
side-chain hydrogen bonds, interactions with water,
and salt bridges were not included in the side-chain
conformation restraints. However, all the other
features listed above and several additional features
were lested in a number of different combinations.
The aim was to develop the best pdf for restraining
side-chain conformation given an alignment, with a
related structure.

As for the main-chain modelling, the protein
features that may correlate with the side-chain
dihedral angle classes of a restrained residue, ¢;,
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Table 11
Success for the prediction of the main-chain
eonformation class

Residue type Total number % Correctly predicted

w 219 (37) 80
Q 301 (67) 89
P 430 (79) 86
F 224 (38) 83
C 360 (62) 83
A 683 (123) 82
% 791 {136) 79
8 751 {139) '
I 518 (88) 6
H 200 (36) 73
R 262 (46) 73
K 446 (77) 72
T 614 (108) 7l
D 382 (69) 70
Y 330 (57) 89
M 137 (23) 68
¢ 918 (163) 66
N 481 (85) 62
K 319 (57) 62
T 655 (118) 57

9150 {1608) 73

Total number is the number of residue pairs containing the
residue being predicted; the numbers of the predicted residues are
shown in parentheses. The smoothed pdf pt M/ M’ r, 3) was used
for the prediction of the main-chain conformation class M. The
residue types are listed in descending order with respect to the
success of the prediction. The bottom line gives the total number
of equivalent residue pairs, the total number of residues with a
defined main-chain conformation state and the prediction success
averaged over all residue types.

were selected from the list in Table 3. These are the
types of the restrained and equivalent residues and
the features that can be classified into the following
three groups: main-chain conformation of an
equivalent residue (M’, t', @', ¥, o), side-chain
conformation of an equivalent residue (¢, ¢4, ¢4, ¢4},
and varability measures (s, i, ¥, a’, g, ') {Table 9).
For each ¢;, the non-smoothed and smoothed {¢ =5)
pdfs of the form plc/a, b, . .., £) were derived from
the learning database for the 2517 possible combina-
tions of up to four selected features (a,b,..., ¢)
listed above. Each of the resulting pdfs was
evaluated by predicting the most likely side-chain
conformation class for each residue in all 5586
equivalent residue pairs in the test set and by
comparing these predictions with the actual con-
formations found in the crystallographic structures
(Tables 12 to 14).

Similarly to the prediction of the main-chain con-
formation class, the side-chain dihedral angles ¥; are
modelled as a weighted sum of Gaussians:

) = Z mfjiv[ifija a;(x:)], (26)

where ;; are the probabilities that the restrained
side-chain dihedral angle 7 is in class j, and N(x, g) is
a Gaussian pdf with mean a and standard deviation
g (Table 5). The remaining problem is to determine
the probabilities wy; of all side-chain conformation
classes for each restrained residue.

The ¢; class can assume up to three values,
depending on ¢ and the residue type (lable 5). Some
residues, however, have a smaller number of
possible ¢; classes; for example, ¥, in His only has
two. The current implementation of the smoothing
procedure (subsection (¢), above) smooths the data
over all three possible y; classes for all residue types.
As a consequence, the probabilities for non-existing
¥ classes may become greater than zero. This
problem is patched after the smoothing by resetting
the probabilities for non-existing y; classes to 0 and
renormalizing the rest of the probabilities so that
their sum equals 1.

Unlike the main-chain conformation classes, the
side-chain classes ¢; are assigned to different residue
types in an arbitrary way; i.e. class ¢; =1 of Ser is
not the same as class ¢, = 1 for Glu (Table 5). As a
consequence, whenever a side-chain conformation of
a residue being predicted (¢;) or an equivalent
residue (¢ is included in a pdf, the corresponding
residue type (r or #') also has to be added. Thus, the
simplest meaningful pdf for prediction of the side-
chain conformation is p(c/r), not ple;). The pdf
ple/r) is equivalent to a rotamer library such as

that of Ponder & Richards (1987).

(1) Prediction of the y, conformation class

When p(e;/r} is used in the prediction of the y;
class, the prediction success is 5749, because that
many residues are in their most likely classes
{Table 12). All residue types prefer the — y,; class,
except for Val which strongly prefers the ¢ class and
Ser which has a weak preference for the + class.
When information about the type and y, dihedral
angle of an equivalent residue is added to obtain pdf
pley/r, 7', ¢}), the prediction success increases for
649, to 63:89%,.

None of the remaining independent variables
listed in Table 9 improves the prediction success of
plefr) or ple,/r, 7', ¢}), irrespective of whether the
variables are used on their own, in pairs, or in
threes, The prediction successes of the smoothed
pdfs remain at around 57% [plc,/r)] and 639
|p(cyfr, v, ¢y)]. Tt has been shown that side-chain
dihedral angle y; correlates with y, (Janin et al.,
1978} and with main-chain conformation (Dunbrack
& Karplus, 1993; McGregor et al., 1987; Sutcliffe et
al., 1987b) of the same residue. In contrast, when g,
and main-chain conformation of an equivalent
residue are used, these correlations are not statisti-
cally strong enough to help the prediction. It is
possible, however, that the prediction using these
correlations could be improved for sequences that
are more similar to the known structure than the
present test sequences, for which the average
residue identity is 359, . Unfortunately, the current
local database is too small to reliably test this
possibility.

Some of the pdfs with three or four independent
variables are sparse as shown by the difference in
the entropies of the non-smoothed and smoothed
pdfs, and by a drop by up to 7%, in the prediction
success of the non-smoothed pdfs compared to the
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Table 12 Table 13
The butld-up of the pdf for prediction of the y , The build-up of the pdf for prediction of the ¥,
class, ¢ class, ¢,
% Correctly % Correctly
Entropy predicted Entropy predicted
pd” Non-smth  Smth  Non-smth  Smth pdf Non-smth  Smth  Non-smth  Smth
Uniform pdf 1-099 1-099 333 333 Uniform pdf’ 519 519
pleyir) 09357 09539 5736 57-36 ples/r) 06202 07749 7068 7068
plefr, oy 8778 09244 5772 5772 plegir, ¥ e 14806 07810 7015 T0-30
plcyir. ) 08914 09230 5603 5626 pleair. 7'\ ) 05153 07903 7128 71-65
pleyir, M) 08568 09272 5655 56-48 plegfr, ) 06085  0TE5T 7076 076
pleyfr, v, MY 05785 09238 5268 542 plesir. M) 03830 07608 7043 7043
pleyfr o', M) 06456 09261 5452 56-65 plegr, ) (H6045 0708 TO-08 70:06
e, @) 07753 00443 5T4T 5777 plegir, W) 05734 07743 T124 71-30
pleyir, ¥, 8) 06087 09342 5801 59:53 Plegir, D) 05172 07850 6939 69-89
plc,ir. ¥) 08165 09303 5810 5908 plegir . M) 03879 07801 6847 6945
pleyfr 7, @) 05018 09399 5065 5554 plesir.a’. M) 04219 07815 6806 70-08
pleyfr. v, W) 04545  (-9283  52:83 5800 pleair, ¥, 8) (4238 07943 7069 7128
pleyfr. @, ¥ (H1346 (9399 8557 5908 ployfr, DY (28492 8127 6904 70-48
pler. ¥) 08679 09377 5487 5561 o 03431 08048 6689 60-45
plefr, @) 09190 09473 5527 5497 plear, 7 ) 03148 07992 6652 6919
ple . 8, ) 07496 09547 5606 5797 pleair, ) 05851 07648 604l 69:54
pilc e ¥, i) 06567 09427 5352 55-56 plesir, 7, 8) 04377 07875 6917 6976
plegfr.ei. ) 07140 09288 62-73 6377 pleyfr, a) 06108 07574 T0-24 70-52
Pletr.ci v, eh) (5814 (0342 6140 6387 pleair, 5. 1) 04930 07922 7022 70115
pledr e, v ) 04912 00170  60-26 63:32 pleyir, iy, 7 £ 03754 08017 T0-00 71-48
pler. ¢ v, d) 04898 00312 6005 6431 plesr, 7', ') 03746 08056 6850 7037
plogfr. ey r, ) (-4822 49301 60-65 63-87 pleafr, ey, v 8) 0-3578 O-8045 T0-02 7119
pleyfr. e, 7 1) 0-5008 09272 5453 63-60 plegfr, e, v i) 0-3696 0-8024 70-80 71-95
plegfr.ey. v, M) 4750 09217 5917 63-80 pleafr, ey, v’ ) 3971 0-8005 72:30 7228
pleyin &), 7, @) 0-3887 09359 5806 6315 plesir, €3, 7', M) 03413 08063 70-20 71-06
plesir, ¢, ¥, &) 02024 08175 6717 7121

Conditional pdfs for prediction of ¢, from all combinations of
up to 4 independent features were calculated and evaluated. Only
& small fraction of the total of 2517 different pdfs are shown.
Non-smth, non-smoothed pdf; Smth, smoothed pdf (6 =5). See
Tanle 9 for the description of the variables.

smoothed pdfs. This drop demonstrates the bene-
ficial effect of smoothing: smoothing always
increases the prediction suceess for sparse pdfe and
does not significantly decrease the prediction
suzcess of dense pdfs.

The results in Table 12 show that ple,/r. ¢f, #) is
the best pdf for prediction of ¢, for a sequence at
approximately 359%, residue identity with the
known structure. However, the pdf plc,/r, ¢}, ¥, s
wes selected for the subsequent calculations of
weights o, ; (eqn (26)} to include the beneficial effect
of s. As shown for the prediction of main-chain
conformation, pdf with s is capable of relying more
on the homologous structure when similarity is high
and more on the residue type preference when
sirnilarity is low.

The prediction  successes of  p(ey/r) and
pley/r, ¢y, 7', s) are listed for the individual residue
types in Table 15. The residues that are predicted
most reliably (809,) by p(e,/r. €}, ¥, s) tend to be
large and buried (Trp, Cys, Leu, Val and Tyr). The
residues that are predicted least reliably (509,) tend
to be small and exposed (Asn, Met, Arg, Glu and
Ser).

The largest improvement as a result of using
information about the equivalent side-chain occurs
for Trp (309,), His (239%,), Asp (17%,), Thr (129),

See legend to Table 12,

Tyr (109%,) and Leu (109,). The amount of informa-
tion provided by the type and y, of an equivalent
residue tends to be large for large or buried residues
and small or non-existent for exposed residues. This
improvement reflects the degree to which the side-
chain conformation of a residue is restrained by its
environmernt.

(ii) Prediction of the y, conformation class

Al residues with the usual trimodal distribution
of the ¥, dihedral angle (Asp, e, Lys, Leu, Met, Gln
and Arg) prefer the t class, Trp prefers class 1, His
and Asn prefer class 2. The overall prediction
success for the simplest pdf p(e,/r) is 70:79,
(Table 13). When the residue type and ¢; class of
the equivalent residue are added to this pdf, the
prediction success is increased marginally to 7179
[pleafr, ¥, ¢5)]. When information about the y,
angle of an equivalent residue is added to obtain
pley/r, 7, ¢y, ¢3), the overall prediction success is
further increased to 72:39%; most of the increase
comes from only three residues: His {59), Leu (29)
and Gln (59,). This small improvement seems to
reflect the inter-dependence of the y; and y, angles
{Janin et al., 1978). The pdf pleyfr. ', ¢}, ¢3) was
selected for the subsequent calculations of weights
@,; that are needed to restrain side-chain dihedral
angle %, {eqn (26)). The prediction successes of
plea/r) and pley/r, ¥, €], €5) are listed for the indivi-
dual residue types in Table 15. Similarly to x|, the
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Table 14
The build-up of the pdf for prediction of the x ;
class, ¢4
9% Correctly

Entropy predicted
pdf Non-smth  Smth  Non-smth  Smth
Uniform pdf — — 342 342
plesfr) 0-9066 0-9679 58-52 5852
pleafr, v, ) 07022 096857 5608 5678
plesfr, v, c3) 07608 09674 59-36 59-42
pleatr, ¥ ) 07949 09677 6000 60-26
pleafr, o) 0-8773 G-9578 3383 3383
pleafr. M) 08758  0-9801 6032 6032
pleyfr. t) 0-8897 0-9757 61-08 6108
pleyir, ) 07770 09779 5974 5074
plesfr, W) 0-8318 0-9698 5878 5878
plegir, @, ¥ (4404 09698 5608 5711
plesfr, v, M) 05715 09696 56-40 5%-16
plegjr, o, M) 07053 09815 5273 5363
pleyfr, . 5) 5926 0-9709 5897 58:39
plesfr, v', D) 05144 0-9694 53-95 5537
pleafr, v, ) (4658 09620 5299 5865
pleyfr, v} 0-8501 09711 59-87 5955
pleafr. @) 08847 09723 5859 5878
plesfr, s, §) 07264 0-9769 59-68 5884
pleafr, v, 1) 06111 09675 5820 5904
plesfr. e, 7', 1) 06011 0-9639 5871 6064
pleafr. 63, 7' @) 5980 09607 640 5852
plegir, . 7', ) 05670 09652 5TI6 HTH6
pleafr.cq, ', 1) (5739 09648 5633 a871
pleafr, ¢, 7', ) 06392 09641 5723 5871
plesfr. ey, r, M) 05444 9677 8704 5974
pleafr, dh. . ch) 06574 09660 5775 59-68
pleafr, da, 7', O 04680 09671 5151 57175

See legend to Table 12,

two residues that are most improved by the
information from the equivalent residue are Trp and
His.

{iii} Prediction of the y5 conformakion class

Glu residues fall into two x5 classes, of which class
2 is dominant with 809, of the Glu residues. The
other residues with y; angles (Lys, Met, Arg, Gln)
have three classes. For Met and Gln, the three
classes are almost equally populated, whereas Arg
and Lys have a preference for the t class (479, and
719%,. respectively). The overall prediction success
for the simplest pdf p(cy/r) is 5859 (Table 14}
When the residue type and y; dihedral angle of the
equivalent residue are added to this pdf to get
pleyfr, ¥, ¢4}, the prediction success is increased to
60-3%,. Examination of the prediction successes of
various pdfs plesfe, b, ... ¢) for different residue
tyvpes indicated that information about the
secondary structure state of the equivalent residue
improves the prediction of both Met and Gln by
a few percentage points. Therefore, the pdf
plea/r, ¢5, 7', t) was used in the subgequent calcula-
tions of weights w;; that are needsd to restrain
side-chain dihedral angle y; (eqn {26)}. The predic-
tion success for the individual residues is listed in
Table 15. The prediction of Gln is the worst,
whereas Lys and Glu are predicted most succeass-
fully. Note, however, that Glu has only two classes
of which the most probable cne spans a large range
of degrees (Table 5), Met is the only residue whose
prediction is improved significantly by information
from a related structure.

Table 15
Success for the prediction of the side-chain y; classes, ¢

9% Correctly predicted

Total

Residue type number ¥y class Xz class X3 class X4 Class
w 219 (37) 868 (368) 813 (82:2) — —
C 360 (62) 81-4 (774) — — —
L 685 (118) 740 (644 593 (559) — —
v 791 (136) 723 (72-1) — — —
Y 330 (57) 69-4 (596} 100-0 (100-0) - —
[ 518 (88) 689 (659) 739 (739 — —
K 146 (77) 652 (662) 635 (64-9) 760 (753 714
F 224 (38) 647 {579) 100-0 (100-0) — —
D 382 (69} 647 (47-8) 100:0 (100-0) — —
H 209 ({36) 61-7 (383 622 (5656} — —
Q 391 {85) 61-4 (64-2) 665  (62°7) 37-3 {35-8)
T 614 (108) 585 (46:3) — — -
N 481 (85) 551 (520 551 (56-5) —
M 137 (23) 547 (52°2) 642 (69°6) 547 (21°7) —
R’ 262 (46) 534 (52:2) 729 (739 192 (543) 804
E 319 (67 517 (49°1) 649 (63-2) TO6 (80-7) —
5 7l (139) 457 (40-3) : - —

7119 {1243) 64-4 (57°4) 723 (70-7) 60-6 (58'5) 748

Total number is the number of residue pairs containing the residue heing predicted; the numbers of

predicted residues are listed in parentheses. The smoothed pdfs piey/t, e, 7', 8), pleyfr. v, ¢}, €5).
pleafr. ey, r' 1) and pley/r) were used for the prediction of xy, x,. ¥ and x, dihedral angle classes,
respectively. The prediction successes of the smoothed pdfs p(e/r) are shown in parentheses for
i=1,2,3. The residue types are listed in descending order with respect to the success of the ¢,
predietion. The bottom line gives the total number of equivalent residue pairs tested by the pdf, the
total number of residues with a defined y, dihedral angle, and the ¢; prediction successes averaged over
all residue types that have defined y; dihedral angles.
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Figure 8. Derivation of a feature pdf from basis pdfs. In all plots, 180 <d < 185 and 22:5 < d" <2340, (a) Wd/d", d").
(b) W(d/d'. d", 5, 5"}, where 02 <7 < 04 and 02 <3 < 04. (c) W'(d/d". d". 5. 5"). where -2 < ¥ < (-4 and 04 <5’ < 0-6.
(d) W(d/d', d”. 5, 5"}, where 0-4 < § < 06 and 0-2 << 5" < 04. The histograms are obtained by scanning the local database,
The broken lines are the basis pdfs p?(d/d’, d”, ¥, 5") caleulated from eqn (23). The continuous lines are the feature pdfs

pPriid', d". 8, 5") caleulated with egns {27) and (28).

(iv) Prediction of the y, conformation class

Only Lys and Arg residues have a j, side-chain
dihedral angle. In the learning database, 649, of
Lys residues and 749, of Arg residues are in the
most likely ¢ class. The prediction suecess of the
simplest pdf pley/r) is 7539%,. No increase is
achieved by addition of any combination of up to
three independent wvariables listed in Table 9.
Whatever the values of the independent variables,
the most likely conformation of y, remains to be the
t class. Smoothed pdf pley/r) is used in the sub-
sequent calculations of weights w,; (eqn (26)).

3. Satisfaction of Spatial Restraints

It was shown in the previous section how spatial
restraints on the sequence to be modelled can be
expressed as pdfs. These pdfs were obtained from
stereochemical considerations and from a single
homologous structure, In this section, we describe
how to combine the restraints from several homo-
logous structures and how to use these restraints to
detive a 3D model. The aim is to obtain the most
probable model for a certain sequence given its
alignment with related structures. The 3D model is
obtained by an optimization of the molecular pdf
which depends on the model and on the restraints,
As a result, violations of the given restraints by the
model are minimized.

(a) The molecular probability density function

The molecular pdf is assembled from feature pdfs
which, in turn, are obtained from basis pdfs.

(i} Derivation of a feature pdf from basis pdfs

A feature f of a protein structure is defined as any
quantity associated with a particular set of atoms
tjk .. . 1. For example, the distance between atoms ¢
and j is a feature, the distance between atoms j and
% is another feature and the angle ¢j& is yet another
feature. The basis pdfs. p/(f), are the pdfs described
in sections 2(e) to (i). In general, every structural
feature f can be restrained by several basis pdfs
pl(f) for k=1,2, ... . A feature pdf, pf(f), is a pdf
that combines all the information about the possible
values that the feature f can assume. The lower-case
and upper-case superscripts are used for the basis
and feature pdfs. respectively.

The tfollowing example clarifies these definitions.
The aim is to construct a feature pdf for a particular
(*—(C* distance in a given sequence. Suppose two
known related structures with equivalent distances
are available; therefore, we have two corresponding
basis pdfs for the *-C* distance in the target
sequence (eqn (23)). In addition, we also know that
each of the two restraints has to comply with the
van der Waals criterion, i.e. the distance has to be
larger than the sum of the two van der Waals radii
(egn (22)). Tn order to combine all this information,
we have to combine the three basis pdfs into a single
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1. Use the MDT program to obtain the frequency table W'(d,d’,d”,5",5”). Distance d ranges
from 15 to 25.04 in steps of 0.5A, distances d' and d” from 18 to 22.04 in steps of 0.54 and

average residue neighbourhood differences from 0 to 1.5 in steps of 0.3.

2. Estimate weights wy (3") and w,(3”) for all histograms W (d/d', d”, 3, ") that have more than

200 data points and where d’ is at least 1.5A away from d”. Divide each histogram into two

parts at (d' + d")/2. Weights w(5) and w(F") are set proportionally to the number of the

data points in the corresponding part of the histogram.

3. Use the Lsq program to fit the model in Eq. 28 to the 570 w;(3) points from the previous
step. The calculated values of the parameters @, b, and ¢ are 0.0331 + 0.0025, —4.98 + 0.11,
and 1.800 4 0.079, respectively. The RMS deviation between the data and the model is 0.05.

Figure 9. Determination of the weights of basis pdfs contributing to a feature pdf.

feature pdf. To do that, we can use all possible
alignments of three proteins in the local database.
An example of the dependence of a C*—C* distance
on the two equivalent distances from two related
structures, p(d/d’, 4”), is shown in Figure 8(a). The
histogram suggests that p(d/d’, d”) can be modelled
as a weighted sum of the individual pdfs p(d/d") and
plfd’y.
pldfd', d", §,5") = @5 ) - p(d[d') + w(5") - p(d/d").
{27)

This relation is clearly a better fit to the data than a
product of the individual pdfs which would imply
that the most likely distance d is an average of '
and d”. The weight w of each term in this sum is
proportional to the average residue neighbourhood
difference s between the corresponding structure
and the sequence of the unknown. The data can be
fitted by the following model for w(s):

w(s)
2 wis)’
i
where (28)

w(s) = a+exp(bs); Y ofy) =1,
i)

w(s} =

as described in Figure 9. The result is that the
contribution to the 3D model of a related structure
falls faster than linearly with the average residue
neighbourhood  difference  between the two
sequences. Examples of histograms and analytical
curves for the feature pdf corresponding to different
weights are shown in Figure 8(b) to (d).

The last step in the derivation of the feature pdf
is to include the van der Waals restraint. Since all
stereochemical restraints have to be satisfied in all
structures, these restraints are multiplied into the
feature pdf and we obtain the final feature pdf:

PpP(d) = [, pAHd) + 0y pi(d)Ip°(d).

This simple approach to combining of two basis
pdfs was used for any number of basis pdfs of the
same type that were derived from related strue-
tures, including the basis pdfs described in sections
2(f) to (i). When properties such as main-chain and
side-chain conformation are predicted, average

neighbourhood sequence difference is replaced by
the neighbourhood sequence difference.

Definitions of all types of feature pdfs follow, with
the basis pdfs on the right side of the equations as
defined in sections 2(e) to (i). The subscript ¢ in the
sum refers to the sequences with known structure
that are aligned with the sequence of the unknown.
The independent variables a,b,... refer to the
features correlated with the restrained feature as
described in sections 2{f) to (i). The weights w; are
determined from equation (28). The derivation of
the feature restraints is implemented in the program
GETCSR.

1. *-(C* distance restraints:
pP(d) = p*(d) Z w;piidia, b, ...) (29)

for all pairs of C* atoms in the sequence of the
unknown that satisfy the following three criteria:
(1) there is at least one equivalent C* atom pair in
the known structures; (2) there are at least N°©
(usually 1) residues between the two residues span-
ning the distance in the sequence of the unknown;
and (3) at least one equivalent distance in the
known structures is less than d; (usually 20 A). The
sum runs over all known structures with an equiva-
lent C* pair present,
2. Main-chain N-O distance restraints:

p(h) = p'(k) . xpi(hfa. b, .. ) (30)

for all pairs of main-chain N and O atoms in the
sequence of the unknown that satisfy the following
eriteria: (1) there is at least one equivalent (N, O)
pair in the known structures; (2} there are at least
N, (usually 2) residues between the two residues
spanning the distance in the sequence of the
unknown; and {3) at least one equivalent distance in
the known structures is less than d, (usually 10 A}.
The sum runs over all known structures with an
equivalent N—O pair present.
3. Stereochemical restraints:

ple) = ple). {31)

Feature ¢ can be bond length, bond angle, “‘stereo-

chemical” dihedral angle (section 2{e)}, van der
Waals contact, or the distance, angles and dihedral
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angle of a disulphide bond. The feature pdf for van
der Waals contacts, p”(v), restrains only those pairs
of atoms that are not already restrained by the
feature pdfs for the bond lengths., bond angles,
C*-C* distances and mam-chain N-0O distances.

+. Main-chain conformation restraints:

n

pM(8y =< 5
p™(0/R)

where # stands for either @ or ¥ main-chain
dihedral angle. If there is no equivalent residue in
any of the related structures {n =0). the restraint
depending only on the residue type in the sequence
of the unknown is applied.

5.y, X2, X3 and yx, side-chain dihedral angle
restraints:

wiplBla,. b, ...) >0
1 (32)

n="4,

. w;pilcla b, ... >0
R (33)
pilefR) n=1{),

where ¢ stands for either x,. x,, y3 or y, side-chain
dil edral angle. A rotamer library based only on the
residue type is used when there is no equivalent
residue in any of the available structures (n = 0).

(ii) Derivation of a molecular pdf from feature pdfs
The last stage in the derivation of a molecular pdf
is 10 combine all feature pdfs into a molecular pdf,
The 3D structure of a protein is uniquely deter-
mited if a sufficiently large number of its spatial
features, f;. arc specified. The goal is to find the 3D
structure that is consistent with the most probable
values of individual features f;,. The molecular pdf
should give a probability for oceurrence of any
combination of these features simultaneously. Then
the model for the 3D structure of the unknown
would correspond to the maximum of the molecular
pd-. Assuming that feature pdfs are independent of
each other, the molecular pdf is simply a product of
feature pdfs defined in equations (29) to (33):

P=11p"f0. (34)

Thus, by maximizing function P we find the most
prebable model for the 31 structure of the unknown
given its alighment with the known structures.
Assuming the independence of feature pdfs is
equivalent to the supposition that the total enerpgy
of the molecule can he expressed as a sum of indivi-
dual energy terms. This is clearly incorrect in some
cases. For example, the probability of a certain ©
angle depends strongly on the value of the ¥ angle
of the same residue (Fig. 3). To model these correla-
tions properly, higher dimensional pdfs of the form
play, ....za b, .. ,¢)  would be  needed.
Unfortunately, the current database of alignments
is not large enough to derive such pdfs in general.
However, some partial solution of this problem may
sometimes still be possible, as demonstrated by our
pdfs for the main-chain dihedral angles where the
individual pdfs for @ and ¥ angles were derived

from the pdfs for the main-chain c¢onformation
classes, which are based on both main-chain
dihedral angles. Search for strongly correlated
features and their treatment within a single multi-
dimensional pdf will be an important part in tuture
improvements of this approach to protein
modelling.

{b) Optimization of the molecular pdf

This section describes the tools for optimization
of the molecular pdf that are implemented in the
program MODELLERY. The latest version of
MODELLER consists of about 35,000 lines of code
in FORTRAN 77 that was tested to run on
IBM R8/6000, Silicon Graphics Tris 4D, SUN Spare-
station, NEC Decstation, DEC Alpha and NeXT
workstations. This program has a variety of func-
tions that facilitate modelling, including building of
structures from sequence, multiple comparison of
proteins, comparison of protein features with
restraints, and various graphic routines that output
PostScript files (all Figures in this paper, except
Figs ! and 10, were produced by the ASGL program
which works in tandem with MODELLER).
MODELLER is implemented as an interpreter of
a high-level language specialized for dealing with
protein structures.

The function that is actually optimized is a trans-
formation of the molecular pdf P:

F=—In{P), (35)

where all the features are expressed in terms of
atomic Cartesian co-ordinates. Function F is
referred to as the objective function. The same
Cartesian co-ordinates that maximize P also mini-
mize F. However, /' is computationally better
suited for optimization than P, since multiplication
of terms in the product of equation (34) is substi-
tuted by their addition in equation (35) and since
the problem of floating point overflow is smaller for
F than for P,

The second transformation of the original
maolecular pdf that is useful in optimization is
scaling of the standard deviations of the basis
restraints. This option allows independent scaling of
each of the restrained feature types (bond lengths,
bond angles, (*~(** distances, etc.). By increasing
the standard deviation, the restraint becomes less
powerful and a larger violation iz more likely,
similar to the effect that a decrease of a foree
constant has in energy minimization.

To increase the radius of convergence, the vari-
able target function approach is implemented in
MODELLER. This method has been introduced by
Bravn and G& in the DISMAN program for caleu-
lating protein 3D structures consistent with 21
NXMR constraints (Braun & (6, 1985). The main
difference between the original method and the

¥ MODELLER 0.9 that was usg:d in the present work
is available upon request from A.5. MODELLER 1.1,
with several significant improvements, documentation
and improved ease of use will be available shortly.
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present implementation is that the current
optimization proceeds in the Cartesian space,
whereas the original procedure optimized the
dihedral angles. Following the variable target func-
tion method, the optimum of the molecular pdf is
found by sucecessive optimizations of increasingly
more complex ‘“‘target” functions, culminating in
the true molecular pdf at the end. This series is
obtained by starting with sequentially local
restraints and then introducing more and more
long-range restraints, finally arriving at the true
molecular pdf incorporating all the restraints. More
precisely, the target function F{Ar) is defined as a
function of an integer variable Ar=1, .., N, where
N iz the number of residues in the sequence being
modelled. The target function P(Ar) is obtained in
the same way as the molecular pdf, except that only
those restraints whose atoms originate from residues
not more than Ar residues apart in the sequence are
included. The whole calculation consists of a
number of conjugate gradient optimizations (Press
et al, 1986) of target functions P(Ar) with
increasing Ar values. The starting conformation for
(1) optimization is either an extended structure or
a conformation derived from an extended chain by
rotation around the main-chain and side-chain
dihedral angles. In the subsequent steps of the
variable target function method, the starting con-
formation is the final model from the previous step,
An ensemble of different final models is obtained by
using different initial conformations.

4. Modelling of Trypsin

To illustrate the method of comparative
modelling by satisfaction of spatial restraints, this
section describes the modelling of trypsin from two
other serine proteinases, elastase and tonin. The
availability of the crystallographic 3D structure of
trypsin allowed an evaluation of the model. Two
other examples of application of MODELLER
include modelling of ferredoxin (Sali, 1991) and of
mouse mast cell chymases (Sali et al., 1993).

Serine proteinases are enzymes consisting of two
domains and approximately 230 residues, with the
active site located in the cleft at the interface
hbetween the two domains. Kach of the two domains
contains a distorted six-stranded f-barrel with a
buried structurally conserved core and one or two
helices (McLachlan, 1979). The main structural
differences between the members of this family are
in the length and conformation of the exposed loop
segments that connect the conserved strands and
helices,

The 3D structures of trypsin (223 residues;
Walter et al., 1982), elastase (240 residues, Meyer e
al., 1988) and tonin {227 residues; Fujinaga &
James, 1982) were compared using the program
COMPARER (Sali & Blundell, 1990} (Figs 10 and
11). This program relies on many structural proper-
ties and relationships, such as positions of C* atoms,
local main-chain conformation, solvent accessibility
and main-chain hydrogen bonding patterns. When
only those aligned C* atoms that are less than 35 A

apart from each other are considered, 196 pairs
superpose with the r.m.s. of 0-79 A in the more
similar pair of trypsin and elastase, whereas only
184 pairs superpose with the higher r.m.s. of 0-87 A
in the superposition of trypsin and tonin. This trend
is reversed for the sequence comparisons, where the
sequence identity between elastase and trypsin is
only 38%,, and that between tonin and trypsin is
429,

In a real application of MODELLER, the
sequence of trypsin would have to be compared with
the alignment of elastase and tonin to obtain the
final multiple alignment. Such a sequence align-
ment, however, would be less swmitable for model
building than the structure-based comparison. As
this modelling example was designed to test the
MODELLER program, its performance should not
be limited by a suboptimal input alignment.
Therefore, the structural alignment was used for
extraction of spatial restraints on the sequence of
trypsin as described in section 2. The types of
restraints and their numbers are listed in Table 16.
Note that many more restraints are available than
in the refinement of a model using NMR-derived
constraints. However, the comparative modelling
restraints are generally not as accurate as those
obtained from NMR spectroscopy.

Thirty-nine models of trypsin were calculated by
optimizing the molecular pdf from 39 different
initial conformations. These conformations were
obtained by setting the main-chain and side-chain
dihedral angles @, ¥ and y; to random values
between 0 and 360°. The progress of modelling was
followed by monitoring the average atomic shifts
and the wvalue of the objective function. The
optimization schedule and a typical progress of
optimization are shown in Figure 12. A total of 11
models with low values of the objective function
was obtained (10,2934-655) (Table 17). These
maodels were close to the correct trypsin structure.
The remaining 28 models were the mirror images of
either the whole molecule or of a part of it. They all
had a significantly higher value of the objective
function (> 15,000} and were thus easily identified
as misfolded models. The model with the lowest
value of the objective function (9388) among the 11
successful trials was taken to be the representative
trypsin model (the best model). The violations of
the restraints by this and other ten models are small
{Tables 16 and 17). The stereochemistry of the
models is comparable or better than that of the
crystallographic trypsin structure refined at a high
resolution.

Fven though the MODELLER models have good
stereochemistry, we used molecular mechanics
program CHARMM 22 (Brooks et al., 1983; A. D.
MacKereil, Jr, D. Bashford, M. Bellott, R. I..
Dunbrack, Jr, M. J. Field, 8. Fischer, J. Gao, H.
Guo, 8. Ha, D, Joseph, L. Kuchnir., K. Kuczera,
F.T. K. Lau, C. Mattos, 8. Michnick, T. Ngo, D. T.
Nguyen, B. Prodhom, B. Roux, M. Schlenkrich, .J.
Smith, R. Stote, J. Straub, M. Watanabe, J.
Wiorkiewicz-Kuczera & M. Karplus, unpublished
results) to refine the energy of these models and
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Figure 10. COMPARER alignment of the 3D structures of trypsin. elastase and tonin. The formatting convention of
program JOY (Overington ef of., 1990) is applied (see legend to Fig. 1). The numbers in the top line refer to the
alignment positions. The numbers in the second line are the trypsin residue numbers as specified in the Brookhaven
Protein Databank; they were obtained by the alignment of trypsin with chymotrypsinogen. Gaps in the trypsin sequence
are indicated by the letters A through E. The numbers in the bottom line count the residues in trypsin. The second line
from the bottom gives the secondary structure assignments of individual trypsin residues to the helix (a) and f-strand (b)

(Kabsch & Sander, 1983).

Figure 11. Comparison of trypsin. elastase and tonin. The stereo plot shows the superposition of the ( backbones of
elastase (medium line) and tonin (thin line) on that of trypsin (thick line). The pairs of the 0 atoms that are aligned in
the COMPARER alignment (Fig. 10) were used for the superpositions. Chy moteypsinogen numbering is used.

cryvstallographie trypsin structure {Table 17). All
hydrogen atoms were added to the heavy-atom
models and then the structures were refined in vacuo
by 200 steps of the conjugate gradients minimiza-
tien of the default CHARMM 22 energy function.
This funection includes bond length, hond angle,
dihedral angle, 612 Lennard-Jones, and electro-
static terms. Atomic positions were not restrained
during energy minimization because this type of
minimization s not capable of large positional
changes. The final C* positions had an r.m.s. devia-
tion of approximately 0-75 A from the initial posi-
tiong. These shifts resulied in an improvement in
energy from approximately 10,000 keal/mol to
— 300 keal/mol, but at a cost of an increase in an
r.m.s. from 0-85 A to 095 A for comparison with the
ervstallographic trypsin structure. Most of the
improvement in energy was due to the relaxation of

the structures that were strained in some positions
by the addition of the hydrogen atoms (not shown).
Additional energy decrease resulted from optimiza-
tion of a few exposed segments (not shown) that
were badly modelled by MODELLER. The value of
the objective function also increased sighificantly as
a result of energy minimization from approximately
10,000 to 35,000. The results of the energy minim-
ization of the crystallographic trypsin structure can
be used to put these observations into context
(Table 17}: (1) The crystallographic trypsin strue-
ture had as high an initial energy as the 11
MODELLER models. {2) Trypsin structure did not
change as much as the MODELLER models during
minimization. (3) Refined trypsin structure had a
somewhat lower energy than the MODELLER
models, We conclude that energy minimization does
not significantly improve the overall quality of the
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Figure 12. Schedule and progress of optimization. The optimization schedule is specified in the bottom 3 lines. The
iteration line eounts the conjugate gradient steps. The bottom 2 lines show the changes in Ar: Ar is increased every 150
conjugate gradient steps or when the largest atomic shift is smaller than 0-005 A. Each change in Ar corresponds to a step
in a variable target Tunction method. There are 31 such steps to get one model. The method starts with a few restraints
that involve only the atoms from residues at most Ar residues apart and gradually incorporates all restraints (the final Ar
equals the length of a sequence). The C* traces of the evolving model at several stages during the refinement are shown on
the top of the Figure. The starting conformation in this case is an extended chain; generally, it is a chain with random @,
¥ and y; dihedral angles. The van der Waals criterion was gradually introduced in the last 5 steps of the variable target
function method by scaling the corresponding standard deviations by 8, 4, 2. 1 and 1. The data for the trial resulting in
the model with the lowest value of the molecular pdf are shown. The CPU time needed to calculate one model is 1'5 h on

an 1BM RS/6000-550 workstation.

models, certainly not in the regions where there are
sufficient homology-derived restraints. However, a
combination of energy terms and homology-derived
restraints may be useful for modelling of exposed
parts of the structure where homology-derived
restraints are weaker because of structural vari-
ability and gaps in the alignment. In the rest of this
section, the original MODELLER models are
described.

The best trypsin model is very similar to the
crystallographic trypsin structure (Figs 13 and 14,
Table 18). The accuracy of the model is different for
buried and exposed parts; thus, the comparison is
done separately for the residues that have fractional
side-chain solvent accessibility less than 209
{buried residues) and for the remaining residues
{exposed residues). Only six of the 107 buried C*
atoms are more than 3-5 A away from their correct
positions, whereas 22 out of 116 exposed C* atoms
are further than 3-5 A from their positions in the
actual trypsin structure. There is no significant

difference between the accuracies of the (* atoms
and all main-chain atoms; the r.m.s. exror for huried
main-chain atoms is approximately 07 A, and for
exposed main-chain atoms, approximately 10 A.
Comparison of the inter-molecular distances
between the superposed C* positions in the three
pairs of elastase—trypsin, tonin-trypsin and the best
trypsin model-trypsin is shown in Figure 14. The
majority of the aligned positions are close to each
other, but there are several exposed regions where
the distance between at least one of the template
structures and trypsin is larger than 3 A, In these
cases, one of the template structures is generally
significantly closer to the crystallographic trypsin
structure than the other template structure. The
rule for the combination of basis pdfs (eqns (27) and
{28)) takes advantage of this common occurrence.
In fact. the largest error in the model (alignment
positions 160 to 170) corresponds to the region
where the wrong template, tonin, was used. This
error was the result of the higher local sequence
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Table 16

Spatial restraints used to model trypsin
Tye Bagis pdfs® Feature pdfs® Violations® r.m.s.” r.m.s.*
Bond lengths 1659 1659 O (001 Ay 0-005 A 0005 &
Bond angles 2250 225() 5 (10} 2:00° 200°
Dihedral angles’ 919 919 1 (207} $40° 340°
van der Waals contacts® 531 531 002l 002 A oz A
{*-(* distances 23,538 11.914 26 (15 A) 022 & 047 A
Main-chain N-Q distances 7480 3832 19 (1'5 A) 031 A 51 A
Main-chain ® dihedral angles 1110 222 2 (207} 10-8° 21-2°
Mam-chain ¥ dihedral angles 1332 222 9 {207y W6° Mg
Side-chain y, dihedral angles 528 176 5 (25%) 84° 16:8°
Hide-chain y, dihedral angles 264 103 3 (259) i0-2° 13-0°
Side-chain y, dihedral angles 92 32 2 (25°%) 119° 48:1°
Kide-chain y, dihedral angles 48 16 0 (25%) 4:5° 21-9°
Disulphide bridge bonds 6 6 0 (0-1°) 0007 A 0007 A
Dizulphide bridge angles 12 12 0 (1) 37 37
Disulphide bridge dihedral angles 6 12 0 (207) 10-0° 12-9°
cis-Peptides® 0 0

® Lists a number of basis restraints of a given type that were used to model trypsin.

* Lists a number of feature restraints of a given type that were assembled from the basis restraints.

¢ For the best model, a number of the features that differ from the closest optimum in the feature pdfs by more than the cutoff in the
parentheses is given. These cutoffs generally lie between 1 and 2 standard deviations of the corresponding basis pdfs. The best model is
def ned as the one with the lowest value of the molecular pdf,

4 r.m.s. deviation between the actual values in the best model and the closest uptimum in the feature pdfs.

* r.m.s. deviation between the actual values in the best model and the most likely optimum in the feature pdfs.

T These dihedral angles restrain the planarity of peptide bonds and rings as well as chirality of the chiral carbon atoms.

¥ Al pairs of atoms that are not restrained by any of the bond or bond angle terms are restrained by the minimal contact distance.
On ¥ the number of pairs that violate this restraint in the final model is listed.

" There are no cis-peptide bonds in trypsin. The only ris-peptide bond in tonin is at Prol98, which is aligned with Gly in trypsin
(Fiz. 10). Therefore, no cis-peptide bonds were imposed on trypsin.

Table 17
Evaluation and energy minimization of the MODELLER models (4-32) and the crystallographic trypsin
structure { 2ptn)

MODELLER Energy minimization
No. of Objective r.m.s. Energy No. of Objective Arms. r.m.s. Energy
Madel violations function 2ptn (A) (keal/mol) violations function (&) 2ptn (A) (kealfmol}
+ 6/66 9358 {r852 16,386 311432 31712 0718 (895 —316
6 23182 10.652 0872 10,988 35490 31732 738 0957 —249
7 217143 10,493 (860 11,145 30/541 37.437 0790 0957 — 302
11 6/93 9621 0-861 10,620 30/443 31,986 762 0-953 —320
15 12162 9659 (-854 11.569 277295 32,703 (664 0922 —319
17 13/130 10,097 0831 10,851 26/434 30505 (760 0-888 —302
18 8/34 4891 0-837 10,813 304409 35.019 0752 0974 —325
24 18120 10,167 OB5T 11,3500 351547 34,854 0798 G967 — 300
25 E5/218 11,205 811 11,370 32/636 37,978 0815 (358 —287
30 15/180 10,621 (+550 10,897 317458 36,707 0-768 (r032 —303
32 18/199 11,431 (856 11,938 317709 36.366 (894 (+931 —283
2Zptn 207450 18,070 G000 9166 27/667 31.452 (480 0-480 —405

The MODELLER columns refer to the models as obtained by MODELLER. 'The energy minimization columns refer to these models
as refined by energy minimization in CHARMM 22 (MacKerell, Jr ¢ «al., unpublished results). Before energy caleulations. hydrogen
aty ns were added to all the structures so that the energy was minimized without moving the heavy atoms. See the text for description
of the energy minimization. The first number in the No. of violations columns is the number of violations of stereochemical restraints
(bod lengths. bond angles, dihedral angles, and van der Waals contacts). and the second number is the number of violations of the
homology-derived restraints. The violation cut-offs and all restraint types are listed in Table 16. The Objective function columns
centain the value of the molecular pdf. r.m.s. 2pin refers to the comparison with the erystallographic trypsin structure; it is calenlated
onty with pairs of " atoms that are closer than 3'5 A. There are between 189 and 194 such pairs. In total, there are 223 (* atoms, 1629
heavy atoms and 1603 hydrogen atoms in the trypsin molecule. The r.m.s. values for all heavy atoms are approximately 259, higher
tha 1 the r.m.s. deviations for C* atems only. A r.m.s. refers to the shifts of all 223 (™ atoms caused by energy minimization. When the
stee pest descent minimization is used instead of the vonjugate gradients method, the r.m.s. shifts are of the order of (+25 A, and the
ene-gies of the refined models are of the ovrder of 600 keal/mol (not shown).
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Figure 13. Comparison of the best trypsin model with trypsin. Comparison is obtained by superposing all C* atoms.
Chymotrypsinogen numbering is used. Trypsin (bonds with open circles), trypsin model (line). {a) Comparison of the C*
traces. (b) Comparison of side-chains in a mostly buried region.

similarity between tonin and trypsin  when
compared to the local sequence similarity between
elastase and trypsin; tonin also has no gaps relative
to trypsin, whereas elastase has a two-residue inser-
tion relative to trypsin (Fig. 10). Regardless of these
sequence similarities, elastase structure in  this

AC, from trypsin [A)
M AENONLE®DED

N TPTN V9T1 YN TIRY PINY PROY I POY

720 40 80 80 100 120 140 160 180 200 220 240
ALIGNMENT POSITION
Figure 14. Comparison of the crystallographic trypsin
structure with elastase, tonin and the best model of
trypsin. Elastase, tonin and the best trypsin model were
superposed on trypsin using the C* atoms that are aligned
in the COMPARER alignment (Fig. 10). The distances
between the aligned C* atoms are plotted for each of the 3
comparisons. The horizontal axis corresponds to the align-
ment position (line 1 in Fig. 10). Elastase-trypsin and
tonin—trypsin comparisons are shown in dotted lines in
the top and bottom half of the plot. respectively. The best
trypsin model-trypsin comparison is shown in continuous
line in both parts of the plot. All 3 curves are smoothed by
plotting a value at position i that is an average of the
distances at positions i —1, 7 and i+ 1.

region is significantly more similar to trypsin than
tonin. Interestingly, one of the 11 models (but not
the best one) still selected elastase as the template
in this region {Fig. 15). The second largest error in
the model (alignment positions 193 to 195) results
from a similar situation. Despite these two
problems, the optimization of the molecular pdf
picks the correct template six times and only misses
three times. This success does not appear to be
trivial because, in the absence of crystallographic
structures, the overall sequence similarity as well as
the number and size of the gaps in the alignment
would suggest incorrectly that tonin is more similar
to trypsin than elastase.

Similarly to the main-chain, buried side-chains
were modelled more accurately than exposed side-
chains. Eighty-two percent of the buried y, classes
and 699%, of the exposed classes were predicted
correctly. For the y, class, 799 of the buried
residues and 80%, of the exposed residues were
modelled successfully. The average y; prediction
score for all y4 classes is 689;. There are no buried
Arg and Lys residues; they are all exposed and
predicted with 75%, accuracy.

Four of the six disulphide bridges have the disul-
phide bridge dihedral angle y; in the correct class
(either in the +90° or —90° region). The two
bridges that are not modelled correctly are
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Figure 15. Comparison of the 11 trypsin models. The models are superposed using all the C* atoms. Chymotrypsinogen

numbering is used.

C128-(232, which does not have an equivalent
bridge in either tonin or elastase, and C168-C182,
which connects the two parts of the main-chain that
are modelled least accurately.

The C* atoms of the 11 models of trypsin are
superposed in Figure 15. The variability in the C*
pesitions is shown more quantitatively in Figure 16,
There are five regions where the r.m.s. deviation
between the 1} models is larger than 1 A. These five
regzions include three segments with the largest
errors in the best model; the first and the last
variable region do not correspond to the errors in
the best model. Thus, the variability among the

models can be used as a conservative estimate of the
regions in the best model that are most likely to be
in error when the experimentally determined strue-
ture is not available. The same conclusions are valid
for the main-chain N-O distance, and main-chain
and side-chain dihedral angles {data not shown).
The modelling example described in this section is
not a particularly difficult problem because of a
relatively high similarity between the target
sequence and the two template structures. There is
no region in the target sequence that does not have
aligned residues in at least one of the templates, 1f
no equivalent residues in the template structures

Table 18
Compartson of the best trypsin model with trypsin

A, Main-chains

Cut-off = 35 A

No cut-off

Type of atom Accessihility No. T8, d.roms. No. r.m.s. d.r.m.s.
" Buried 101 0-689 (668 107 1-403 0-949
Exposed 94 1-004 1073 116 241 1-516
All 195 852 (859 223 1773 1-265
Main-chain Buried 400 -693 0684 428 1-445 0971
Exposed 378 1017 1075 4464 2030 1-499
All 774 {854 0-906 892 1-781 1266
B, Side-chains
Class Avccessibility No. o, Correct
i Buried 82 817
Exposed 94 691
All 176 750
X2 Buried 47 87
Exposed 56 804
All 13 7046
i Buried 5 4040
Exposed 26 31
All 3F 67-8
Ya Buried 0
Exposed 16 750
All 16 750

A, The 2 main-chains are compared in lerms of r.m.s. and distance r.m.s. (d.r.m.s.; Levitt, 1983) for U* atoms and for il 4 main-chain
atems (N, (%, C and 0). Additionally, one comparison includes only the pairs of aligned atoms that are less than 35 A (vut-off =35 &)
apart, whereas the other comparison (ne cut-off) includes all pairs of aligned atoms. The numbers of the equivalent pairs are listed for
each case. B, The 2 sets of side-chains are compared in terms of the fractional identity of the side-chain dihedral angle classes for each of

the 4 types. The numbers of the angles in each class are also given.
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Figure 16. Variability in the positions of the C* atoms
in the 11 trypsin models. At each position in the sequence
of trypsin, variability is calculated as the r.m.g. deviation
among the inter-molecular digtances between all pairs of
equivalent C* atoms in the 11 meodels. There are 55=
11 x 10/2 such distances at each sequence position. Before
the inter-molecular distance is calculated, the 2 models
are superposed using all C* atoms.

were available, MODELLER would use only the
main-chain dihedral angle restraints based on the
residue type alone. We would not expect such weak
restraints to result in an accurate model. Thus,
structurally similar segments from the database of
all known protein structures would have to be found
and added to the alignment. In principle, filtering
methods based on the distances between the gap
flanking regions {(Jones & Thirup, 1986) could he
used for this task, but general applicability of this
approach iz questionable (Tramontano & Lesk,
1992). Another possibility may be an exhaustive
conformational search employing energy criteria
(Bruccoleri & Karplus, 1987; Moult & James,
1986).

When the starting structure for MODELLER was
the actual trypsin structure, the final value of the
objective function was never lower than that of the
best model calculated with random starting con-
formations. The value of the objective function for
the crystallographic trypsin structure is signifi-
cantly higher than those for the 11 MODELLER
models (Table 17). This suggests that the optimizer
is suitable for the problem at hand and that further
increase in accuracy of the model will have to come
from more accurate restraints, not from a better
optimizer.

It is interesting to compare MODELLER to other
comparative modelling methods, even if a rigorous
comparison is not possible due to, among others, the
differences in protein data sets, in proteins
modeiled, and in measures employed to evaluate the
success of the prediction,

For example, Overington (1991) combined careful
manual  modelling  with computer program
COMPOSER (Sutcliffe ef al., 1987a.h) to calculate a
model of trypsin on the basis of four other serine
proteinases. The r.m.s. for the 150 core C* positions
was (64 A for his model; it is 0-60 A for our model,
even though only two templates were used by
MODELLER.

Recently, Dunbrack & Karplus (1993) developed
an elegant automated side-chain prediction method
that compares favourably with other side-chain
prediction methods. For comparison, we applied the
first stage of the method of Dunbrack & Karplus,

which is based on the backbone-dependent rotamer
library using the template backbone, to the seven
serine proteinases in our test set. The prediction
success of this procedure was 599 for y, class. The
second refinement stage of the method, which opti-
mizes packing and energy. improves the accuracy of
a model on the average by 659, (Dunbrack &
Karplus, 1993). Thus, it is reasonable to expect that
the method of Dunbrack & Karplus would yield an
approximately 65%, success rate for the serine
proteinases in our test set. This is similar to the
649 success rate obtained with the use of our
approach  that employed the basis pdf
pley/r, ¥’ ¢}, 8) from a single template (Table 15).
When several templates and optimization of the
molecular pdf are used, our prediction success is
expected to improve, depending on the similarities
between the target sequence and the template
structures.

The segment match modelling of Levitt (1992) is
guided by the positions of some atoms (usnally C*
atoms) to find the matching segments in the repre-
sentative database of all known protein structures.
Since the matching segments contain the initially
missing atoms, the method determines the full
atomic model for the initial trace of the guiding
atoms. This method can be used for comparative
modelling if the C* atoms of a homologous protein
are used to guide the segment search. The method
appears to be one of the best methods in its class,
judging by the accuracy of the constructed models
and by the sensitivity of this accuracy to the errors
in and the number of the guiding atoms. When an
r.ms. error of less than 1:0 A is introduced inio the
guiding positions and all ¢* positions are used to
guide the segment search, the resulting r.m.s. error
in the main-chain atoms is 0-8 to 0-9 A. This should
be compared with an r.ms. error of 069 A for the
buried main-chain atoms in the trypsin model
{Table 18). For side-chain ¥, and y, dihedral angles,
the average prediction successes of the segment
matching method are 729, and 599, respectively,
when the exact C* positions from the target are used
to guide the search. The dihedral angle was con-
sidered correct when it was within 30° of the exactly
correct value. Since the average standard deviation
of the angles within each class is approximately 10°
(Table 5), the prediction successes must increase by
3-59 for comparison with our criterion. The predic-
tion successes for all y, and yx, classes in the
MODELLER trypsin model are 759, and 799,
respectively. However, these comparisons are
approximate because the MODELLER number is
based on only one model, because using the homo-
logous backbone is likely to decrease the accuracy of
the side-chain prediction in the segment modelling,
and because it is not clear how the sequence simi-
larity between tonin, elastaze and trypsin compares
with the similarities between the database and the
test set of Levitt {1992).

In conclusion, MODELLER appears to be at
least as accurate as the other manual or antomated
knowledge-based methods.
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5. Discussion
(a) Applicability of frequency tables

Frequency tables and related matrices are
commonly used to analyse or predict attributes of
protein structure. Dayhoff’s MDM250 mutation
metrix (Dayhoff et al., 1978) is a close analogue of a
21> table W, where one axis represents the residue
type at any position in the first protein and the
other axis, the residue type at the possibly equiva-
lert position in the second protein. The Dayhoff
metrix element measures the likelihood that the two
residues are actually equivalent. Overington and co-
workers have used multi-dimensional forms of the
probability tables W and their transformations to
sezrch for combinations of protein features that are
conserved in evolution {Overington et al., 1990,
19492). Similar matrices were used to detect
distantly related sequences (Luthy ef al., 1991), to
identify sequences that fold into a known 3D strue-
ture {Bowie ef al., 1991) and to assess protein 3D
models (Liithy et al, 1992). Other examples of
frequency tables and closely related matrices
intlude the Ramachandran plot obtained from a
database of known protein structures (Wilmot &
Thornton, 1990), various parameter sets for
secondary structure prediction (Chou & Fasman,
1974), side-chain rotamer libraries (Dunbrack &
Kerplus, 1993; Janin et al., 1978; Ponder &
Ri:hards, 1987} and hydrophaobicity scales found by
analysing the known protein structures (Manavalan
& Ponnuswamy, 1978).

We describe a systematic and quantitative
approach to searching for significant associations
between the features of protein structure. This
approach exploits the database of known protein
structures and their alignments. It is based on
expressing the association between selected features
as a conditional pdf and on quantifying the strength
of the association by entropy, conditional entropy
and, where possible, by the prediction success of the
tested pdf. To facilitate the derivation, analysis and
use of these pdfs, the smoothing procedure of Sippl
(1990) is extended to multidimensional tables.

The usefulness of this approach is illustrated by
using such associations to model the structure of a
protein given its alignment, with related structures.
It is shown that a certain C*-C* distance has a
(aussian  distribution around the equivalent
distance in a homologous structure. The standard
deviation of this distribution is determined as a
function of the local environment. When more than
one known structure is aligned with the given
sequence, the most likely distance in the sequence is
nov the average of the equivalent distances from the
known structures, but the distance from the related
structure that has the most similar local environ-
ment, The same conclusions are also valid for main-
chain N-O distances.

?dfs are also used to model main-chain dihedral
angles @ and W of a residue in a sequence, given its
alignment with a related structure. Main-chain con-
formation is described as one of the six classes

corresponding to the six populated areas in the
Ramachandran plot (Wilmot & Thornton, 1990),
similar, but not identical, to secondary structure
types. The hest of the 7249 different pdfs tested
takes into account the main-chain conformation
class of an equivalent residue, as well as the type of
the modelied residue and the sequence similarity of
the two equivalent local environments. When pairs
of homologous serine proteinases with the average
sequence identity of 359 are used as the test case,
approximately 739, of residues are predicted
correctly. Note that this prediction success is
achieved using only one related structure and,
without further refinement of the initial prediction
in the context of the whole structure.

A number of pdfs (10,068), or rotamer libraries,
are constructed to find the best pdf for comparative
modelling of side-chain conformations, The side-
chain conformation of a residue is described by a
small number (1 to 3) of side-chain conformation
classes for each side-chain dihedral angle that exists
in the given residue. Even though the main-chain
conformation of a residue being modelled strongly
determines the conformation of its side-chain
(Dunbrack & Karplus, 1993}, the information
provided by the main-chain conformation of an
equivalent residue in a homologous structure is
small. The best pdf for modelling side-chain con-
formation takes into account the side-chain con-
formation of the equivalent residue and the
similarity between the two local environments. The
overall prediction successes of the pdfs for the y,,
X2, ¥3 and y, dihedral angles are 649, 72%,, 619,
and 759, respectively, for the pairs of serine
proteinases in our test set. The pdfs used here
appear to give at least as good a prediction as one of
the best of the published automated methods
(Punbrack & Karplus, 1993).

{b) Modelling by satisfaction of spatial restraints

We describe the use of an alignment of a target
sequence with several related template structures to
extract many spatial restraints on the structure of
the target sequence. These pdfs constrain stereo-
chemistry, main-chain and side-chain conformation,
C*~(* and main-chain N—O distances. The aim is to
find the 31> structure of the target that is consistent
with most probable values of the constrained
features. The zolution to this problem is achieved by
combining all the pdfs into a single molecular pdf
such that an optimization of this function leads to
the most probable model given the alignment. The
molecular pdf is a product of pdfs that constrain
individual distances and angles, which themselves
may be sums of pdfs obtained from the individual
homologous proteins. By optimizing the molecular
pdf, violations of the restraints by the model are
minimized. The optimization is implemented in the
MODELLER program. This program applies the
variable target function approach (Braun & G,
1985) with the conjugate gradients algorithm to the
positions of all non-hydrogen atoms. In  this
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approach, the optimization starts from a random
initial conformation and initially uses only the
sequentially local restraints. Tt then proceeds in a
number of steps to increase the number of restraints
until, finally, all the restraints are included and
their violations minimized. Both the extraction of
restraints from the alignment and the optimization
of the molecular pdf are fully automated.

The method was illustrated by applying it to
modelling of trypsin from elastase and tonin, relying
on the approximately 409, sequence identity.
Eleven models with small violations of restraints
were calculated using different initial conformations
in MODELLER. The model with the lowest value of
the molecular pdf was compared with trypsin. The
r.m.s. error for all backbone atoms was found to be
approximately 07 A for the 195 equivalent residues
that had their C* atoms less than 3-5 A apart; 28
residues an the periphery of the trypsin fold were
modelled less accurately. Approximately 809, of
buried and 739%, of exposed side-chain dihedral
angle classes y, to y, were modelled correctly. The
variability among the 11 models can be used to
indicate the errors in the best model. The accuracy
of the trypsin model is similar to that of the strue-
tures from medium resolution crystallography and
NMR experiments {Clore & Gronenborn, 1991).
Even though no rigorous comparison of
MODELLER with other modelling methods ig
possible, it appears that MODELLER, in its current
form, is at least as accurate as any of the other
manual or automated methods based on the
homologous or all protein structures.

In the future, MODELLER may be improved by
using a larger database to get more accurate
restraints, especially for side-chain and main-chain
dihedral angles; using additional restraint tvpes, for
example, distance restraints involving C* atoms;
analysing the side-chain errors to improve side-
chain modelling, possibly by including energy
eriteria such as hydrogen bonds and solvation
terms; using a multiple alignment of the target
sequence with many shorter segments corre-
sponding to the variable regions with gaps and
possibly finding and applying pdfs specific for these
regions; refining the rule for the combination of
basis pdfs into feature pdfs.

Recently, MODELLER was applied to calculate
3D models of four mouse mast cell chymases. These
models were examined to propose site-directed
mutagenesis  experiments for identification of
proteoglycan-binding regions and to suggest the
amino acid segments for raising the protease-specific
antigenic epitopes (Sali ef ol., 1993).

(¢) Comparison of MODELLER with other
approaches to protein structure prediction

This section compares MODELLER with predic-
tion methods hased on distance geometry and
energy. The comparison focuses on the type of
information employed by the methods, not on the

techniques using this information or on their
performance.

(1) Distance geometry

The aim of the metric method of distance
geometry is the derivation of the atomic positions
consistent with protein stereochemistry and with a
limited number of lower and upper bounds on the
distances between these atoms. Distance geometry
has been used with NMR-derived constraints
(Braun & G&, 1985; Havel & Wiithrich, 1985) as
well as with distance constraints obtained from
homologous structures (Havel & Snow, 1991).

MODELLER is similar to distance geometry
because it also derives the Cartesian co-ordinates
from restraints on spatial features of the sequence to
be modelled. However, MODELLER is an exten-
sion of distance geometry in a sense that pdfs also
restrain features other than distances and that a
restraint expressed as a pdf contains more informa-
tion than a mere specification of lower and upper
bounds. From the point of view of information used,
MODELLER would emulate distance geometry if
feature pdfs for distances had the simple form of the
uniform distribution between the bounds, and zero
elsewhere.

{il) Energy minimization

MODELLER calculates the model as the most
probable structure for a certain sequence given its
alignment with related structures, whereas energy
minimization methods caleulate the model as the
lowest energy structure given a force field
(Berendsen et al., 1984; Brooks ef al., 1983). Tt is
tempting to equate the logarithm of the molecular
pdf to the total energy of the system and the
logarithms of basis pdfs to the individual energy
terms. The analogy is exact for the hasis pdfs that
constrain the stereochemical features (section 2(e)).
However, all other basis pdfs in MODELLER have
a purely empirical origin. Thus, a MODELLER
optimization does not have any physical signifi-
cance such as that of the individual energy terms,
total energy and molecular dynamics in molecular
mechanics, This difference extends the amount of
information that can be used in the derivation of
the MODELLER model. When the only aim is to
predict the native structure, it is more useful to
process the information about protein structure at
the “‘probability level”, not the “energy level”. For
example, from the point of view of energy, it would
be natural to constrain a certain distance by a sum
of quadratic terms each term corresponding to the
equivalent distance from one homologous structure;
this would force the distance in the model to be
hetween the distances in the known structures.
From the point of view of probability, however, we
are naturally led to the correct form of the restraint
which is a weighted sum of the Gaussian distribu-
tions, not their product. This is consistent with the
view that crystallographic structures in the family
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populate most of the minima of the energy land-
scape for the whole ensemble of sequences belonging
to the given family; then, any other sequence in the
family is likely to bhe at an already occupied
mirimum, resulting in the observed rule for the
distribution of the triplets of equivalent distances.

Intermediate between the pdfs developed in this
paper and the atomic energy potentials are the
potentials of mean force for protein structure
prediction from sequence alone (Avbelj, 1992; Casari
& Sippl, 1992; Jones et al., 1992 Sippl, 1990).

(d) Future directions

The challenge is to unify all the techniques for
determination and prediction of protein structure
into a single protocol, making the best use of all
available information about the structure of a given
protein, regardless of whether it is directly based on
experiment, on the broader knowledge base, on
empirical force potentials, or intuition. The methods
that combine molecular dynamics and energy
potentials with NMR-derived constraints (Briinger
et al., 1987a; Clore ef al.. 1986) and X-ray data
(Briinger ef al., 1987a.b) to refine the initial models
can bhe seen as the first step in this direction.
Recently, the advantages of a joint crystallographic
ant NMR refinement were demonstrated {Shaanan
et al., 1992).

The following argument illustrates the benefits of
a combined method. Before we start prediction of
the 3D structure of a protein, we know nothing
about positions of the atoms. In the terminology of
classical mechanies, the actual structure could be a
point anywhere in the phase space spanned by the
axes for the positions of all atoms. We can then
imsgine modelling as a process of reducing the
volume of phase space in which we know the actual
structure is located. This is achieved by using
various kinds of information. First, stereochemical
restraints derived from the chemical connectivities
can be used to remove some of the a4 prior? available
phause space. This can be pursued further by inclu-
gion of experimental data, such as that from X-ray
erystallography and NMR techniques. We can also
add additional theoretical restraints originating
from empirical energy potentials and known protein
structures. Kach of these kinds of information
allows the model to be in a different area of the
phuse space with a different probability. The goal is
to 9nd the most probable conformation or a set of
most probable conformations according to all types
of information. All the information pooled together
resilts in a smaller allowed volume of phase space
than any of the methods can locate on their own.

The most useful representation of information is a
pdf for the feature that is constrained. The present
modelling method uses pdfs in a relatively general
way. Thus, the method, even though it has so far
been applied only to comparative modelling, could
possibly be extended to include other types of
information, such as NMR-derived constraints.

6. Summary and Conclusions

(1) A database of family alignments for proteins
with known structures was constructed,

(2) Tt was shown how to use pdfs and other tools
to explore quantitatively various relationships
between features in individual proteins and in
families of proteins.

{3) A method for minimizing the problems of a
sparse data set was described and shown to improve
the usefulness of the pdfs.

(4) Using these tools and the current database,
the best pdfs for comparative modelling of a side-
chain  conformation of a given residue were
constructed. They relied mainly on its type, on the
side-chain conformation of the equivalent residue
and on the similarity between the two loeal
environments.

(5) The best possible pdf for modelling the main-
chain conformation from the main-chain of a homo-
logue was found. It was based on the main-chain
conformation of the equivalent residue and on the
similarity between the two local environments.

(6) The pdfs for restraining the C*-C* distances
and the main-chain N-O distances on the basis of
homologous structures were calculated. Tt was
shown that the most likely distance corresponded to
that in one of the related structures, not to the
average of the equivalent distances in the related
structures,

{7} A method was developed for calculating the
most. probable structure for a certain sequence,
given its alignment with one or more related struc-
tures and the general rules of protein structure.

{8) Once the alignment is determined, the
method is completely automated. It can provide a
3D model equivalent to a medium resolution X-ray
structure when homologues with at least 409
sequence identity are known. This means that an
order of magnitude more sequences can be modelled
at a medium resolution that there are entries in the
Brookhaven Protein Databank,
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