Why are cells different from each other?

Eosinophil

Basophil

Erythrocyte

Tissues are different from each other

Gene regulatory factors (GRFs)

GRFs

General TFs

RNA polymerase II transcriptioninitiation complex

Specific TFs

Activate or repress expression of particular genes

Cofactors

Bridge between specific and general TFs; activate or repress

Chromatin remodeler Make DNA accessible or inaccessible

miRNAs Bind to mRNA to degrade them

Transcription factors (TFs)

~ 1500 TFs in human genome

TFs regulate expression of other genes

TFs regulate expression of other genes

Many TFs have to come together to start/stop transcription of a target

TFs recognize specific sites/motifs in DNA

Some TFS bind DNA as dimers

Many TFs have to come together to start/stop transcription of a target

bHLH: basic helix loop helix TFs bZip: beta zipper TFs NR: nuclear receptors

Homo-dimers or hetero-dimers \rightarrow added complexity

TFs network to regulate their targets

TF-TF interaction network (PPI)

Nodes = Proteins

TFs

Links = relationship between the genes interacting TFs undirected

Gene regulatory network (GRN)

Nodes = genes/proteins TFs, targets

Links = relationship between the genes TF regulates target directed, positive or negative

Experiments to obtain networks

TF-TF interaction network (PPI)

Nodes = Proteins TFs

Links = relationship between the genes interacting TFs undirected

Gene regulatory network (GRN)

Nodes = genes/proteins TFs, targets

Links = relationship between the genes TF regulates target directed, positive or negative

Yeast-Two-Hybrid (Y2H)

Chromatin immuno-precipitation (ChIP)-Seq

Overexpression/knock-down of TFs, RNA-Seq

Bioinformatics approach to obtain networks

Co-expression networks

Nodes = genes/proteins TFs and targets

Links = relationship between the genes correlated in expression positive or negative undirected!

Features of GRNs and co-expression networks

Hubs \iff peripheral nodes TFs targets

"Small world"

Get everywhere via a few nodes

Modular

Modules have different functions

Dynamic

Change nodes and wires when environment changes

GRNs are hierarchical

Why are tissues different from each other?

Macrophage

Eosinophil

Basophil

Erythrocyte

Why do species look different?

Evolution of networks

Divergence of duplicates

Very rapid, within a few million years!

One copy diverges: neo-functionalization Both copies diverge: sub-functionalization

Elements of networks change with different speed and consequences

Small sequence but big phenotypic differences

Small sequence but big phenotypic differences

Transcription factors (TFs)

~ 1500 TFs in human genome

Numbers of TFs are different between species

of TF domains:

~ 2000 TFs in human genome

Expansion of KRAB-ZNF genes

Huntley et al. 2006

Example: Neofunctionalization

Duplications of transcription factor RUNT:

Sequence of Runx 1-3 very similar, but different expression patterns Rewiring of GRN \rightarrow evolution of new tissues

Example: Rewiring / gain of targets

Example: Rewiring / gain of targets

Chimpanzee

Example: Rewiring / gain of targets

→ larger brain and higher cognitive abilities?