Orthology Analysis

 part of "Graphen und Netzwerke in der Biologie"Sonja Prohaska
Computational EvoDevo
University Leipzig
Leipzig, SS 2011

Homology Relation

" A is homologous to B " means...

- A and B are characters (nucleotide sequences, organs,...) of individual organisms I_{A} and I_{B}, respectively
- A and B are derived from a (last) common ancestor Ica (A, B) by descent
- if A is a homolog of B, B is a homolog of A (symmetric relation)
- "homologous" in respect to syntax (structure) or sematics (function)?
- does NOT just mean "A is similar to B"
- similarity might hint at homology
- similarity without common ancestry is called analogy

Orthology - Paralogy

- if A and B drived from the $\operatorname{Ica}(A, B)$ by duplication, A and B are paralogous
- if A and B are homologs and $I_{A}=I_{B}$ than they are in-paralogs
- if A is paralogous to B and $I_{A} \neq I_{B}$ than they are out-paralogs
- if A and B drived from the $\operatorname{lca}(A, B)$ by speciation, A and B are orthologous

Speciation

Duplication

Orthology - Paralogy

1:1, 1 :many, many:many orthology

1:1 orthology

many:1 orthology

many:many orthology

Problem of destinguishing orthologs and paralogs

More information from additional species and about timing of gene duplication and speciation events can change the view.

