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Crashes, recoveries, and “core shifts” in a model of evolving networks
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A model of an evolving network of interacting molecular species is shown to exhibit repeated rounds of
crashes in which several species get rapidly depopulated, followed by recoveries. The network inevitably self-
organizes into an autocatalytic structure, which consists of an irreducible “core” surrounded by a parasitic
“periphery.” Crashes typically occur when the existing autocatalytic set becomes fragile and suffers a “core
shift,” defined graph theoretically. The nature of the recovery after a crash, in particular, the time of recovery,
depends upon the organizational structure that survives the crash. The largest eigenvalue of the adjacency
matrix of the graph is an important signal of network fragility or robustness.
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The dynamics of crashes and recoveries has been the sulor catalyzed reactions in a well-stirred chemical reactor. The
ject of several empirical and modeling studies in macroevoset £ of nodes with the leask; is determined, i.e..
lution (for reviews, sed1,2]) and financg3-5]. The main  ={j es|xi=minjesxj}_ A node, denoted, is picked ran-
attempt of most models has been to reproduce quantitativejomly from £ and for everyi #k c, andc,; are indepen-
the observed statistics of event sizes. However, it is alsgenﬂy reassigned to unity with probabilityand zero with
worthwhile to ask whether large events share other commoByopapility 1-p, irrespective of their earlier values. This

features, or signatures, that precede the event or characteriggyresponds to removing the noklend all its links from the
the kind of systemic transformation caused by them. Here,

X ~graph and replacing it by another noklevith random links
we present a structurgl analysis, b_ased_on network_ properue% and from the other nodesyy is set to zerox, is set to a
of events that oceurin a modEff;] n Wh'Ch populations of . small constantx,, all otherx; are perturbed by a small
molecular species co-evolve with their network of catalytic A
interactions[7—9]. We find large crashes to be associatedarnOLInt fgom their eX|§t|ng valuk; ,_and a_"X‘ a_re rescaled
with a particular kind of structural change in the network, SO that®i—; xj=1. This captures, in an idealized way, the
which we call a “core shift,” and identify network charac- Impact of a periodic fluctuation like a tide or flooq, which
teristics that signal the system’s susceptibility to crashes¢@n wash out one of the least-populated species in the pond
This kind of analysis might be useful for other models of (extremal selectiori11]), and bring in a molecular species
biological and social evolution. whose catalytic links with those in the pond are randam
The system is a directed graph with nodes labeled troduction of novelty. Then,x is again evolved to its attrac-
ieS={1,2,...s}, represented by its adjacency mat@x tor, another graph update is performed, and so on.
=(c;jj). If there exists a directed link from nogi¢o nodei in Figure 1 shows the number of populated species in the
the graph therc;;=1, elsec;;=0. Each node represents a attractor(i.e., species wittX;>0), s;, as a function of time
molecular species in a prebiotic pond ang=1 means that for three runs with differenp values. Time is represented by
j is a catalyst for the production afThe dynamical variables n, the number of graph updates. Three regimes or phases of
are the “relative population vector” of the species behavior may be observed. First, the “random phase” in
={(X1,..-Xg)|0=x;<137_;x;=1}, which is a fast vari- whichs; fluctuates about a low value. Second, the “growth
able, and the graph itse(br C), which is a slow variable. phase,” whers; shows a clear rising tenden¢gccasionally
Initially, eachc;; for i #] is independently chosen to be unity punctuated by dropsThird, the “organized phase” whesg
with a probabilityp and zero with a probability £p. To  stays close to its maximum valie The average time spent
exclude self-replicating species; =0 for all i. Eachx; is  in each phase depends uppands. In this letter, we inves-
chosen randomly if0, 1] and all x; are rescaled so that tigate the large and sudden dropssdp, visible in Fig. 1
37_ 1% =1. With C fixed, x is evolved according to (mentioned briefly if12]). These “crashes” in the organized
. . and growth phases are followed by “recoveries,” in whigh
. rises on a certain timescale. Figure 2 shows the probability
XFEI Cijxj_xik%1 CiijXj (1) distribution P(As,) of changes in the number of populated
' species, As;(n)=s;(n)—s;(n—1). The asymmetry be-
until it reaches its attractofalways a fixed poin{6,10]), tween rises and drops as well as fat tails in the distribution of
denotedX. Equation(1) is an idealization of rate equations fluctuations are evident. For low, the probability of large
drops is an order of magnitude greater than intermediate size
drops(also see Fig. 1[13].
*Email address: jain@cts.iisc.ernet.in An autocatalytic setACS) is said to be a set of species
"Email address: sandeep@physics.iisc.ernet.in that contains a catalyst for each of its membgt4-14.
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FIG. 1. The number of populated specisg,(continuous ling
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FIG. 2. Probability distribution of changes in the number of
populated specie®(As;) is the fraction of time steps in whicky
changes by an amounts; in one time step in an ensemble of runs
with s=100 andp=0.001, 0.0025, and 0.005. Only time steps
where an autocatalytic set initially exists are counted.

Here, it is a subgraph each of whose nodes has at least one
incoming link from a node of the same subgraph.sub-
graph is a subset of nodes together with all their mutual
links.) For example, in Fig. 3, the subgraph formed by nodes
40, 93, 36, 51, is not an ACS, but that formed by 40, 93, 36,
51, 63, is. The subgraph of all black nodes is also an ACS.
Let N1(C)=\, be the largest eigenvalue @. It can be
shown[10] that (i) if the graph does not have an ACS then
N1=0, and if it does them;=1. (ii) X is an eigenvector of
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FIG. 3. The structure of the graphrat 2885 for the run in Fig.

and the largest eigenvalue @f (whose significance is discussed 1(b), when the dominant ACS spanned the entire graph for the first

later in the text, A; (dotted ling, versus timen. The \; values
shown are 100 times the actual value. Runs shown have
=100, and(a) p=0.001,(b) p=0.0025, andc) p=0.005.

time. Node numberg from 1 to 100 are shown in the circles rep-
resenting the nodes. Black circles correspond to nodes in the “core”
of the ACS, and gray to the “periphery,” defined in the text.
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C with eigenvalue\ ;. (iii) The set of nodes for whiclX; exactly one cycle. Such a core has no internal redundancy;
>0 is uniquely determined b¢, independent ofgenerig  the removal of any link from it will cause the ACS property
initial condition onx. (iv) If A;=1, the subgraph formed by (of that componentto disappear.
the set in(iii) constitutes an ACS, which will be referred to  This is one, purely graph-theoretical reason why the orga-
as the “dominant ACS."[We find X from these algebraic nization is fragile in the vicinity oi,=1. Another reason is
properties, rather than numerically integrating EY. ] dynamical: when\;>1, the core nodes are better protected
In the random phase, the graph has no AlDSFig. 1, this  against selection by virtue of their larger populations,
phase coincides with,=0). The graph remains random be- \yhereas ak, =1, they are more vulnerable. The reason is as
cause non-ACS structures are not robli2]. This phase fqjiows: SinceX is an eigenvector of with eigenvalue\ ; ,

B B _ 2 B
continues on average for a timg=1/p°s until at some \yhen )\, 0, it follows that for nodes that belong to the
graph update a small ACS appears by chance and the growy i -t ACSX;=(1/\1)3c;;X; . In particular, if a nodé

phase begingin Fig. 1, A; jumps from zero to one at that of the dominant ACS has only one incoming liffkom the
very time step, and in general, at the beginning of every

growth phasg A small ACS is robust(iv) implies that mem- nodej, say then X;=X;/Ay, i.e., X is “attenuated” with
bers of the ACS do well populationally compared to specieges’pfect toX; by a factor)\_l. The periphery of an ACS s a
outside it, hence, the latter are replaced in subsequent gra;gﬁe_“ke stru_cture_emangtmg from the core, with _most nodes
updates. When an incoming species receives a link from th82ving a single incoming link, for smajp. Consider, for
existing dominant ACS, the latter typically expands agd ©*@mPple, Fig. 3, in which the entire graph is an ACS with
increases. This growth and self organization continues over A1=1.31, and focus in particular on the chain of nodes 44
timescale 74In's where 7,=1/p until the dominant ACS —45—-24-29-52—89-86-54—78. The farther down
spans the entire graph asgbecomes equal te(see Fig. 3  such a chain a periphery node is, the lower istdecause
[6,10,12. That marks the beginning of the organized phaseof the cumulative attenuation. For such an ACS with
Note that the entire graph in Fig. 3 is an ACS. In a fully >1, the “leaves” of the periphery tree will typically be the
spanned ACS, the least-populated species must be a memisgecies with leask; (and node 78 in Fig. 3 is one such
of the ACS. Now, competition between members of theHowever, whenk,;=1 there is no attenuation. Periphery
dominant ACS becomes important and may lead to fragilitynodes will not have lowek; than core nodes and some may
and rupture of the organization. have higher if they have more than one incoming link. Thus,
Let us define @rashas a graph update evemfor which ~ at A\;=1, the core is not protected and in fact will always
As,(n)<—s/2, i.e., an event in which a significant number belong toL if the ACS spans the grapk, is known to be of
(arbitrarily chosen as/2) of the species go extinct. In runs significance in other complex systems as vj&B—21].
with s=100, p=0.0025 totaling 1.55 million iterations we We now present evidence that crashes are indeed due to
observed 701 crashes. It is evident from Fig. 1 that crasheghanges in the structure of the core. Definedbee overlap
typically take place at or near; = 1. This can be understood denotedOuv(C,C’), between two graph€ andC’ (whose
by taking a closer look at the structure of the dominant ACSnodes are labelg¢das the number of common links in the
The dominant ACS consists of a “core” and a “periph- coresQ andQ’ of their dominant ACSéi.e., the number of
ery.” The core of a dominant ACS is the maximal subgraph ordered pairs of node§, j) such thatQ;; and Qi’j are both
Q from each of whose nodes all nodes of the dominant ACSonzerg. If either C or C’ does not have an ACS,
may be reached along some directed path. The rest of th®v(C,C’) is by definition zero. A graph update event at
dominant ACS is itperiphery For an example, see Fig. 3. time n will be called acore shiftif Ov(C,_;,C,)=0 (C, is
When the dominant ACS consists of two or more disjointthe graph at timen). Figure 4 shows that mo$612) of the
subgraphs, the above definition applies to each compone@01 crashes were core shiftdf a crash is defined as an
separatelyf17]. This distinction between core and periphery event in which more than 90% of the species become extinct,
is useful in the context of the above dynamics. For examplethen there are 235 crashes in these runs of which 226 are
the ratios ofX; values of the core nodes are unchanged if anycore shifts). Of the remaining 89 crashes, 79 were “partial
periphery node or link is removed from the dominant ACS,core shifts” and 10 were events in which the core remained
but removing or adding any node or link to the core in gen-unchanged.
eral changes ak; ratios. For any subgraph, definex,(A) In the 612 core shifts, the average number of incoming
to be the largest eigenvalue of the submatrix®fcorre-  plus outgoing links is 2.27 for all nodes in the graph, 2.25 for
sponding toA. Then, it can be shown that (Q) is the same the node that is hit, and 1.25 for the incoming node. Thus,
as the largest eigenvalue of the whole graph The corelof ~ the nodes whose exchange causes the crash are not exces-
each componejtis an irreducible subgrapti.e., one that sively rich in links (and the hit node is always the least
contains at least two nodes and a directed path from each gopulated. “Nondescript” nodes such as these cause
its nodes to each of its other nodlest follows from the  system-wide crashes because of their critical location in a
Perron-Frobenius theorem that if some links are added to themall core(the average core size at the 612 core shifts is 6.3
core (with possibly additional nodgs\; increases, and if nodes$ that is responsible for the coherence and sustenance
removed from the core\, decreases. Thui, is a measure of the whole networf22]. Core shifts in which the ACS is
of the core size and multiplicity of pathways or “redun- completely destroyed, typically cause the largest danfafe
dancy” within it. \;=1 corresponds to the case where the612 core shifts, these are 136 in number, Wits,|=98.2
core(of every disjoint component of the dominant AC®&s  *1.2). The remaining 476 in which an ACS exists after the
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graph on a time scaley=1/p. After crashes in which an
ACS survives, the recovery time scale is jugt.1The asym-
HO00| -+t e e J metry between positive and negative Chang%lih; a natu-

ral consequence of different processes being involved in the
two cases.

It is characteristic of natural evolution that as different
85 structures arise in the system, the nature of the selective pres-
sure on existing structures, and hence their effective dynam-
ics, changes. In the present system, we likewise see an effec-
tively random graph evolution when there is no ACS, a self-

3 3 organizing growth phase when an ACS, a small cooperative,
and hence robust structure, arises, and competition within the
T o ' [ [ B ACS resulting in its eventual fragility when a fully autocata-
lytic graph is formed. A different system in which the selec-
tive pressures and dynamics change as structures arise is dis-
) , cussed in[23]. Robust yet fragile structures also arise in

core overlap highly designed systeni24]. In the present model, the ap-
pearance of different structures dynamically generates differ-
ent time scalesr, in the random phasesg in the growth
phase, and the survival time of the cargin the organized
phase. These multiple structures and timescales arise endog-
enously, i.e., they are all consequences of the same underly-
ing dynamical rules.

FIG. 4. Frequency of core overlaps in crashes for runs with
s=100,p=0.0025. Thex axis displays the value @®v(C,_,,C,)
in crashedi.e., in the 701 events withs,;(n)< —50].

core shift havgAs;|=75.0=14.2. The former constitute an
increasing fraction of the crashes at smafiealues, causing
the upturn inP(As,) at large negativés, for smallp (Fig. We thank O. Narayan for a discussion and drawing our
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