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Crashes, recoveries, and ‘‘core shifts’’ in a model of evolving networks
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A model of an evolving network of interacting molecular species is shown to exhibit repeated rounds of
crashes in which several species get rapidly depopulated, followed by recoveries. The network inevitably self-
organizes into an autocatalytic structure, which consists of an irreducible ‘‘core’’ surrounded by a parasitic
‘‘periphery.’’ Crashes typically occur when the existing autocatalytic set becomes fragile and suffers a ‘‘core
shift,’’ defined graph theoretically. The nature of the recovery after a crash, in particular, the time of recovery,
depends upon the organizational structure that survives the crash. The largest eigenvalue of the adjacency
matrix of the graph is an important signal of network fragility or robustness.

DOI: 10.1103/PhysRevE.65.026103 PACS number~s!: 89.75.Fb, 87.23.Kg, 64.60.Cn, 05.65.1b
s
vo

ve
ls
o

e
r

rti

tic
e
rk
-
e
o

a

ty

t

s

he

is

ll

e
h
ond
s

-

the

y
s of
in
th

t

d

ility
d

of

size

s

The dynamics of crashes and recoveries has been the
ject of several empirical and modeling studies in macroe
lution ~for reviews, see@1,2#! and finance@3–5#. The main
attempt of most models has been to reproduce quantitati
the observed statistics of event sizes. However, it is a
worthwhile to ask whether large events share other comm
features, or signatures, that precede the event or charact
the kind of systemic transformation caused by them. He
we present a structural analysis, based on network prope
of events that occur in a model@6# in which populations of
molecular species co-evolve with their network of cataly
interactions@7–9#. We find large crashes to be associat
with a particular kind of structural change in the netwo
which we call a ‘‘core shift,’’ and identify network charac
teristics that signal the system’s susceptibility to crash
This kind of analysis might be useful for other models
biological and social evolution.

The system is a directed graph withs nodes labeled
i PS[$1,2, . . . ,s%, represented by its adjacency matrixC
[(ci j ). If there exists a directed link from nodej to nodei in
the graph thenci j 51, elseci j 50. Each node represents
molecular species in a prebiotic pond andci j 51 means that
j is a catalyst for the production ofi. The dynamical variables
are the ‘‘relative population vector’’ of the speciesx
[$(x1 ,...,xs)u0<xi<1,S i 51

s xi51%, which is a fast vari-
able, and the graph itself~or C!, which is a slow variable.
Initially, eachci j for iÞ j is independently chosen to be uni
with a probability p and zero with a probability 12p. To
exclude self-replicating species,cii [0 for all i. Eachxi is
chosen randomly in@0, 1# and all xi are rescaled so tha
S i 51

s xi51. With C fixed, x is evolved according to

ẋi5(
j 51

s

ci j xj2xi (
k, j 51

s

ck jxj ~1!

until it reaches its attractor~always a fixed point@6,10#!,
denotedX. Equation~1! is an idealization of rate equation
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for catalyzed reactions in a well-stirred chemical reactor. T
set L of nodes with the leastXi is determined, i.e.,L
5$ i PSuXi5minjPSXj%. A node, denotedk, is picked ran-
domly from L and for everyiÞk cik and cki are indepen-
dently reassigned to unity with probabilityp and zero with
probability 12p, irrespective of their earlier values. Th
corresponds to removing the nodek and all its links from the
graph and replacing it by another nodek with random links
to and from the other nodes.ckk is set to zero,xk is set to a
small constantx0 , all other xi are perturbed by a sma
amount from their existing valueXi , and allxi are rescaled
so thatS i 51

s xi51. This captures, in an idealized way, th
impact of a periodic fluctuation like a tide or flood, whic
can wash out one of the least-populated species in the p
~extremal selection@11#!, and bring in a molecular specie
whose catalytic links with those in the pond are random~in-
troduction of novelty!. Then,x is again evolved to its attrac
tor, another graph update is performed, and so on.

Figure 1 shows the number of populated species in
attractor~i.e., species withXi.0!, s1 , as a function of time
for three runs with differentp values. Time is represented b
n, the number of graph updates. Three regimes or phase
behavior may be observed. First, the ‘‘random phase’’
which s1 fluctuates about a low value. Second, the ‘‘grow
phase,’’ whens1 shows a clear rising tendency~occasionally
punctuated by drops!. Third, the ‘‘organized phase’’ wheres1
stays close to its maximum values. The average time spen
in each phase depends uponp ands. In this letter, we inves-
tigate the large and sudden drops ins1 , visible in Fig. 1
~mentioned briefly in@12#!. These ‘‘crashes’’ in the organize
and growth phases are followed by ‘‘recoveries,’’ in whichs1
rises on a certain timescale. Figure 2 shows the probab
distribution P(Ds1) of changes in the number of populate
species, Ds1(n)[s1(n)2s1(n21). The asymmetry be-
tween rises and drops as well as fat tails in the distribution
fluctuations are evident. For lowp, the probability of large
drops is an order of magnitude greater than intermediate
drops~also see Fig. 1! @13#.

An autocatalytic set~ACS! is said to be a set of specie
that contains a catalyst for each of its members@14–16#.
©2002 The American Physical Society03-1
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FIG. 1. The number of populated species,s1 ~continuous line!,
and the largest eigenvalue ofC ~whose significance is discusse
later in the text!, l1 ~dotted line!, versus timen. The l1 values
shown are 100 times the actuall1 value. Runs shown haves
5100, and~a! p50.001,~b! p50.0025, and~c! p50.005.
02610
Here, it is a subgraph each of whose nodes has at least
incoming link from a node of the same subgraph.~A sub-
graph is a subset of nodes together with all their mut
links.! For example, in Fig. 3, the subgraph formed by nod
40, 93, 36, 51, is not an ACS, but that formed by 40, 93,
51, 63, is. The subgraph of all black nodes is also an AC
Let l1(C)[l1 be the largest eigenvalue ofC. It can be
shown@10# that ~i! if the graph does not have an ACS the
l150, and if it does thenl1>1. ~ii ! X is an eigenvector of

FIG. 2. Probability distribution of changes in the number
populated species.P(Ds1) is the fraction of time steps in whichs1

changes by an amountDs1 in one time step in an ensemble of run
with s5100 andp50.001, 0.0025, and 0.005. Only time ste
where an autocatalytic set initially exists are counted.

FIG. 3. The structure of the graph atn52885 for the run in Fig.
1~b!, when the dominant ACS spanned the entire graph for the
time. Node numbersi from 1 to 100 are shown in the circles rep
resenting the nodes. Black circles correspond to nodes in the ‘‘co
of the ACS, and gray to the ‘‘periphery,’’ defined in the text.
3-2
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CRASHES, RECOVERIES, AND ‘‘CORE SHIFTS’’ IN . . . PHYSICAL REVIEW E65 026103
C with eigenvaluel1 . ~iii ! The set of nodes for whichXi

.0 is uniquely determined byC, independent of~generic!
initial condition onx. ~iv! If l1>1, the subgraph formed b
the set in~iii ! constitutes an ACS, which will be referred t
as the ‘‘dominant ACS.’’@We find X from these algebraic
properties, rather than numerically integrating Eq.~1!.#

In the random phase, the graph has no ACS~in Fig. 1, this
phase coincides withl150!. The graph remains random be
cause non-ACS structures are not robust@12#. This phase
continues on average for a timeta51/p2s until at some
graph update a small ACS appears by chance and the gr
phase begins~in Fig. 1, l1 jumps from zero to one at tha
very time step, and in general, at the beginning of ev
growth phase!. A small ACS is robust.~iv! implies that mem-
bers of the ACS do well populationally compared to spec
outside it, hence, the latter are replaced in subsequent g
updates. When an incoming species receives a link from
existing dominant ACS, the latter typically expands ands1
increases. This growth and self organization continues ov
timescaletg ln s where tg51/p until the dominant ACS
spans the entire graph ands1 becomes equal tos ~see Fig. 3!
@6,10,12#. That marks the beginning of the organized pha
Note that the entire graph in Fig. 3 is an ACS. In a fu
spanned ACS, the least-populated species must be a me
of the ACS. Now, competition between members of t
dominant ACS becomes important and may lead to fragi
and rupture of the organization.

Let us define acrashas a graph update eventn for which
Ds1(n),2s/2, i.e., an event in which a significant numb
~arbitrarily chosen ass/2! of the species go extinct. In run
with s5100, p50.0025 totaling 1.55 million iterations w
observed 701 crashes. It is evident from Fig. 1 that cras
typically take place at or nearl151. This can be understoo
by taking a closer look at the structure of the dominant AC

The dominant ACS consists of a ‘‘core’’ and a ‘‘periph
ery.’’ The core of a dominant ACS is the maximal subgrap
Q from each of whose nodes all nodes of the dominant A
may be reached along some directed path. The rest of
dominant ACS is itsperiphery. For an example, see Fig. 3
When the dominant ACS consists of two or more disjo
subgraphs, the above definition applies to each compo
separately@17#. This distinction between core and periphe
is useful in the context of the above dynamics. For exam
the ratios ofXi values of the core nodes are unchanged if a
periphery node or link is removed from the dominant AC
but removing or adding any node or link to the core in ge
eral changes allXi ratios. For any subgraphA, definel1(A)
to be the largest eigenvalue of the submatrix ofC corre-
sponding toA. Then, it can be shown thatl1(Q) is the same
as the largest eigenvalue of the whole graphl1 . The core~of
each component! is an irreducible subgraph~i.e., one that
contains at least two nodes and a directed path from eac
its nodes to each of its other nodes!. It follows from the
Perron-Frobenius theorem that if some links are added to
core ~with possibly additional nodes! l1 increases, and if
removed from the core,l1 decreases. Thus,l1 is a measure
of the core size and multiplicity of pathways or ‘‘redun
dancy’’ within it. l151 corresponds to the case where t
core~of every disjoint component of the dominant ACS! has
02610
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exactly one cycle. Such a core has no internal redunda
the removal of any link from it will cause the ACS proper
~of that component! to disappear.

This is one, purely graph-theoretical reason why the or
nization is fragile in the vicinity ofl151. Another reason is
dynamical: whenl1.1, the core nodes are better protect
against selection by virtue of their larger population
whereas atl151, they are more vulnerable. The reason is
follows: SinceX is an eigenvector ofC with eigenvaluel1 ,
when l1Þ0, it follows that for nodes that belong to th
dominant ACS,Xi5(1/l1)S j ci j Xj . In particular, if a nodei
of the dominant ACS has only one incoming link~from the
node j, say! then Xi5Xj /l1 , i.e., Xi is ‘‘attenuated’’ with
respect toXj by a factorl1 . The periphery of an ACS is a
treelike structure emanating from the core, with most no
having a single incoming link, for smallp. Consider, for
example, Fig. 3, in which the entire graph is an ACS w
l151.31, and focus in particular on the chain of nodes
→45→24→29→52→89→86→54→78. The farther down
such a chain a periphery node is, the lower is itsXi because
of the cumulative attenuation. For such an ACS withl1
.1, the ‘‘leaves’’ of the periphery tree will typically be th
species with leastXi ~and node 78 in Fig. 3 is one such!.
However, whenl151 there is no attenuation. Periphe
nodes will not have lowerXi than core nodes and some ma
have higher if they have more than one incoming link. Th
at l151, the core is not protected and in fact will alway
belong toL if the ACS spans the graph.l1 is known to be of
significance in other complex systems as well@18–21#.

We now present evidence that crashes are indeed du
changes in the structure of the core. Define thecore overlap,
denotedOv(C,C8), between two graphsC and C8 ~whose
nodes are labeled! as the number of common links in th
coresQ andQ8 of their dominant ACSs~i.e., the number of
ordered pairs of nodes~i, j! such thatQi j and Qi j8 are both
nonzero!. If either C or C8 does not have an ACS
Ov(C,C8) is by definition zero. A graph update event
time n will be called acore shiftif Ov(Cn21 ,Cn)50 ~Cn is
the graph at timen!. Figure 4 shows that most~612! of the
701 crashes were core shifts.~If a crash is defined as a
event in which more than 90% of the species become exti
then there are 235 crashes in these runs of which 226
core shifts.! Of the remaining 89 crashes, 79 were ‘‘parti
core shifts’’ and 10 were events in which the core remain
unchanged.

In the 612 core shifts, the average number of incom
plus outgoing links is 2.27 for all nodes in the graph, 2.25
the node that is hit, and 1.25 for the incoming node. Th
the nodes whose exchange causes the crash are not e
sively rich in links ~and the hit node is always the lea
populated!. ‘‘Nondescript’’ nodes such as these cau
system-wide crashes because of their critical location i
small core~the average core size at the 612 core shifts is
nodes! that is responsible for the coherence and sustena
of the whole network@22#. Core shifts in which the ACS is
completely destroyed, typically cause the largest damage~of
612 core shifts, these are 136 in number, withuDs1u598.2
61.2!. The remaining 476 in which an ACS exists after t
3-3
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core shift haveuDs1u575.0614.2. The former constitute a
increasing fraction of the crashes at smallerp values, causing
the upturn inP(Ds1) at large negativeDs1 for smallp ~Fig.
2!.

Let ts denote the time for which the system stays in t
organized phase until a core shift occurs.ts increases withp,
but its quantitative dependence onp ands remains an open
question. After a crash, if there is no ACS, the graph usu
becomes a random graph in orders time steps. It takes on
averageta51/p2s time steps before another ACS forms@6#.
Once an ACS appears, it grows exponentially across

FIG. 4. Frequencyf of core overlaps in crashes for runs wi
s5100,p50.0025. Thex axis displays the value ofOv(Cn21 ,Cn)
in crashes@i.e., in the 701 events withDs1(n),250#.
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graph on a time scaletg51/p. After crashes in which an
ACS survives, the recovery time scale is just 1/p. The asym-
metry between positive and negative changes ins1 is a natu-
ral consequence of different processes being involved in
two cases.

It is characteristic of natural evolution that as differe
structures arise in the system, the nature of the selective p
sure on existing structures, and hence their effective dyn
ics, changes. In the present system, we likewise see an e
tively random graph evolution when there is no ACS, a se
organizing growth phase when an ACS, a small cooperat
and hence robust structure, arises, and competition within
ACS resulting in its eventual fragility when a fully autocat
lytic graph is formed. A different system in which the sele
tive pressures and dynamics change as structures arise i
cussed in@23#. Robust yet fragile structures also arise
highly designed systems@24#. In the present model, the ap
pearance of different structures dynamically generates dif
ent time scales:ta in the random phase,tg in the growth
phase, and the survival time of the corets in the organized
phase. These multiple structures and timescales arise en
enously, i.e., they are all consequences of the same und
ing dynamical rules.
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