The Threading Problem

adapted from a lecture by
Dr. Axel Mosig

CAS-MPG Partner Institute for Computational Biology (PICB) Shanghai, China http://www.picb.ac.cn/patterns

May 30, 2011

Predicting Protein Tertiary Structures

- approx. 650-10000 different tertiary structures
- \rightsquigarrow even sequences no obvious sequence similarity can fold into similar tertiary structures
- Idea of threading: utilize a known tertiary structure and "thread" the unknown structure into it
- Branch-and-Bound-Algorithm by Lathrop and Smith (1996).

Threading-Models

- Idea: Essential for tertiary structures are often structurally highly conserved, e.g. those parts that fold into α-helices or β-strands
- Transitions between these conserved parts are less relevant.
- Secondary structure of a sequnece s with m componenets (α-Helices, β-Strands) as abstract model:

Threading-Models

- Length of transitions between sequence parts $\left(\lambda_{i}\right)$ underly certain conditions:

$$
\ell_{i} \leq \lambda_{i} \leq L_{i} .
$$

Definition

A Core Model M is a 5 -tupel $M=(m, c, \lambda, \ell, L)$, where

- $m \equiv$ number of sec. struct. elements
- $c=\left(c_{1}, \ldots, c_{m}\right) \equiv$ length of the segments
- $\lambda=\left(\lambda_{0}, \ldots, \lambda_{m}\right) \equiv$ length of the transitions
- $\ell=\left(\ell_{0}, \ldots, \ell_{m}\right) \equiv$ lower
- $L=\left(L_{0}, \ldots, L_{m}\right) \equiv$ upper bounds for transition lengths

Threading a sequence into a model

- structure s with model M; thread sequence s^{\prime} into M.
- Goal of threading: sec. struct. elements are mapped onto subsequences of same length in s^{\prime} length of transitions may vary (within bounds)
- threading representable as a sequence t_{1}, \ldots, t_{m}

Formal Definition of a Threading

Definition

Let s^{\prime} be sequence of length n^{\prime} and M a core-Model. A sequence $t=\left(t_{1}, \ldots, t_{m}\right)$ is called a threading of s^{\prime} through M, if
(T1) $1+\ell_{0} \leq t_{1} \leq 1+L_{0}$
(T2) $t_{i}+c_{i}+\ell_{i} \leq t_{i+1} \leq t_{i}+c_{i}+L_{i}$ for $1<i<m$ and
(T3) $t_{m}+c_{m}+\ell_{m} \leq n^{\prime}+1 \leq t_{m}+c_{m}+L_{m}$

- In general, given model M and sequence s, there are many threadings satisfying (T1)-(T3).
- Which of those is best? \rightsquigarrow scoring-function

Scoring-Functions: Structure

- Scoring function f has two indgredients:
- How well "matches" a segment of s^{\prime} into a segment C_{i} ? $\rightsquigarrow g_{1}\left(i, t_{i}\right)$
- Extendable to higher-order interactions e.g. of triplets of elements $g_{3}\left(i, j, k, t_{i}, t_{j}, t_{k}\right) \ldots$
- g_{1}, g_{2} are based on knowledge-based approaches
- g_{2} e.g. through pairwise potentials \rightsquigarrow Sippl (1990/1995)

Scoring-functions: interaction graphs

- Segments C_{i} and C_{j} from model M do not interact $\rightsquigarrow g_{2}\left(i, j, k, k^{\prime}\right)=0$ for all k, k^{\prime}
- interaction graph: Graph G_{l} with vertices $V_{l}=\{1, \ldots, m\}$ and nodes

$$
E_{I}=\left\{(i, j) \mid \exists k, k^{\prime}: g_{2}\left(i, j, k, k^{\prime}\right) \neq 0\right\} .
$$

- Scoring-function for $t=\left(t_{1}, \ldots, t_{m}\right)$ formally:

$$
f(t)=\sum_{i \in[1: m]} g_{1}\left(i, t_{i}\right)+\sum_{(i, j) \in E_{l}} g_{2}\left(i, j, t_{i}, t_{j}\right)
$$

Threading as Optimization problem

- Given Core-Model M for sequence s and sequence s^{\prime} with unknown tertiary structure
- Wanted: $\min _{t} f(t)$
- Computing $\min _{t} f(t)$ is (MAX-S)NP-hard: Akutsu/Miyano (1999) \rightsquigarrow Backtracking-algorithm ("brute-force")
\rightsquigarrow Branch-and-Bound-algorithm by Lathrop and Smith (1996)
- Without g_{2} solvable in polynomial time (dynamic programming)

Relative Threading

- Goal: "Address" all possible threadings $T_{M}\left(s^{\prime}\right)$ for sequence s^{\prime} into a model M for traversing $T_{M}\left(s^{\prime}\right)$ systematically
- Let $t=\left(t_{1}, \ldots, t_{m}\right)$ a threading of s^{\prime} through M.
- Relative threading $t^{\prime}=\left(t_{1}^{\prime}, \ldots, t_{m}^{\prime}\right)$ to t is defined as

$$
t_{i}^{\prime}:=t_{i}-\sum_{j<i}\left(c_{i}+\ell_{i}\right) .
$$

Scaffold for B-\&-B-Algorithms

```
branch-and-bound \((X)\)
    \(S \cdot \operatorname{push}(X)\);
    \(x_{\text {opt }}:=\infty\);
    while (!S.empty())
        \(Y=S \cdot p o p() ;\)
        if \(\left(B(Y)<x_{o p t}\right)\) then
        if \(\left(Y==\left\{t^{\prime}\right\}\right)\) then
                if \(\left(f\left(t^{\prime}\right)<x_{o p t}\right)\) then \(x_{o p t}:=f\left(t^{\prime}\right)\);
            else
                split \(Y\) into \(Y_{L}\) and \(Y_{R}\)
                S.push \(\left(Y_{L}\right)\);
                    \(S . \operatorname{push}\left(Y_{R}\right)\);
```

end.

Threading using Branch-and-Bound

- Branch-and-Bound-algorithm traverses a spanning tree of sets of solutions
- Cutting-bounds allow to drop parts of the solution tree
- We need:
- Sets of threadings that can be decomposed into parts
- Lower bounds for sets of threadings that can be easily computed

Threading-Sets

- Define intervals $\left[b_{i}: d_{i}\right]$ (for $\left.1 \leq i \leq m\right)$
- \rightsquigarrow vectors $b=\left(b_{1}, \ldots, b_{m}\right)$ and $d=\left(d_{1}, \ldots, d_{m}\right)$.
- Yields set

$$
T_{M}(b, d)=\left\{t^{\prime}=\left(t_{1}^{\prime}, \ldots, t_{m}^{\prime}\right) \mid b_{i} \leq t_{i}^{\prime} \leq d_{i}, \quad t^{\prime} \text { is rel. threading }\right\}
$$ of (relative) threadings.

- $T_{M}\left(\mathbf{1}, \mathbf{n}^{\prime}\right)=T_{M}\left(s^{\prime}\right)$

Splitting Threading sets ("Branch")

- Choose i such that $b_{i}<d_{i}$.
- Divide Intervals $\left[b_{i}: d_{i}\right]$ into $\left[b_{i}: v\right]$ and $\left[v+1: d_{i}\right]$
- Define analogous vectors b^{\prime}, d^{\prime} and $b^{\prime \prime}, d^{\prime \prime}$
- $T_{L}:=T_{M}\left(b^{\prime}, d^{\prime}\right)$ and $T_{R}:=T_{M}\left(b^{\prime \prime}, d^{\prime \prime}\right)$ yield split of $T_{M}(b, d)$.

Lower Bounds for Threading-Sets

- Wanted: Lower bound $B_{M}(b, d)$ with properties
- $B_{M}(b, d) \leq \min _{t^{\prime} \in T_{M}(b, d)} f\left(t^{\prime}\right)$
- $B_{M}(b, d)$ should be computable fast
- Choose

$$
\begin{aligned}
& B(b, d):=\sum_{i}\left(\left(\min _{x \in\left[b_{i}: d_{i}\right]} g_{1}^{\prime}(i, x)\right.\right. \\
&\left.+\sum_{j<i} \min _{x, y} g_{2}(i, j, x, y)\right)
\end{aligned}
$$

B-\&-B-Threading-algorithm

```
thread \((s, M)\)
    \(S . \operatorname{push}(\mathbf{1}, \mathbf{n})\);
    \(x_{\text {opt }}:=\infty\);
    while (!S.empty())
    \((b, d)=S \cdot p o p()\);
    if \(\left(B(b, d)<x_{o p t}\right)\) then
        if \(\left(T_{M}(b, d)==\left\{t^{\prime}\right\}\right)\) then
        if \(\left(f\left(t^{\prime}\right)<x_{o p t}\right)\) then \(x_{o p t}:=f\left(t^{\prime}\right)\);
        else
            split \((b, d)\) into \(\left(b^{\prime}, d^{\prime}\right)\) and \(\left(b^{\prime \prime}, d^{\prime \prime}\right)\)
            if \(\left(T_{M}\left(b^{\prime}, d^{\prime}\right) \neq \emptyset\right)\) then
                \(S \cdot \operatorname{push}\left(\left(b^{\prime}, d^{\prime}\right)\right)\);
        if \(\left(T_{M}\left(b^{\prime \prime}, d^{\prime \prime}\right) \neq \emptyset\right)\) then
                \(S \cdot \operatorname{push}\left(\left(b^{\prime \prime}, d^{\prime \prime}\right)\right)\);
end
```


How complex is Protein-Threading?

- B-\&-B-algorithm is faster than naive Bachtracking, but still exponentiel worst-case running time
- threading-Problem is MAX-SNP-complete
- Means: we won't even get good approximate solutions in polynomial time unless $\mathrm{P} \neq \mathrm{NP}$!
- How "complex" is the interaction graph?
- Diverse successful structure predictions (CASP)

Structure Prediction in Practice

Literature

- Akutsu T, Miyano S, On the approximation of protein threading Theoretical Computer Science 210, 261-275 (1999)
- Lathrop, R.H. and Smith, T.F. Global Optimum Protein Threading with Gapped Alignment and Empirical Pair Potentials, J. Mol. Biol., 255, pp. 641-665, Feb., 1996.
- Sippl, M.J., Knowledge-Based potentials for Proteins. Curr. Op. Struct. Biology, 5, 1995, pp.229-235
- P. Clote, R. Backofen, Computational Molecular Biology: An Introduction. John Wiley and Sons.

