
Introduction suffix trees and tries naive construction linear time construction

ADS: Algorithmen und Datenstrukturen 2

Teil VII: Suffix Trees

Steve Hoffmann

Bioinformatics Group, Dept. of Computer Science & Interdisciplinary Center for
Bioinformatics, University Leipzig

22. Juni 2011

Introduction suffix trees and tries naive construction linear time construction

suffix and prefix: intuition

What is a suffix?

“suffix?“ is a suffix of “What is a suffix?“

“ a suffix?“ is a suffix of “What is a suffix?“

“What is a suffix?“ for sure is a suffix of “What is a suffix?“

What is a prefix?

“What“ is a prefix of “What is a suffix? “

“What is“ is a prefix of “What is a suffix? “

“What is a suffix?“ for sure is a prefix of “What is a suffix?“

Introduction suffix trees and tries naive construction linear time construction

formalities: alphabet and characters

Let A be a finite set, the alphabet.

the elements of A are characters.

ǫ denotes the empty string.

strings are written by juxtaposition of characters:

The set A∗ of strings over A is defined by

A∗ =
⋃

i≥0

Ai (1)

where A0 = {ǫ} and Ai+1 = {aw | a ∈ A,w ∈ Ai}.

A+ denotes a non-empty string

Introduction suffix trees and tries naive construction linear time construction

formalities: strings, suffixes and prefixes

Let s be a string over the alphabet A

let |s| denote the length of s.

We assume a string of the form s = uvw , u, v ,w ∈ A∗:

u is a prefix of s

v is a substring of s

w is a suffix of s

Note, that by using ǫ every string may be partioned to uvw !

Introduction suffix trees and tries naive construction linear time construction

Searching strings

Current genome projects and internet data bases accumulate
massive amounts of sequences (texts). Searching such texts can be
pretty cumbersome!

Considering a large sequence S over A = {A, C, T, G}. We may ask:

does ACTGCTTACGTACGGTA occur in S?

how often does ACTGCTTACGTACGGTA occur in S?

where does ACTGCTTACGTACGGTA occur in S?

For large sequences that are frequently queried we need more
sophisticated strategies to answer these questions quickly.

Introduction suffix trees and tries naive construction linear time construction

Indexing

For a large string s that is frequently queried (ie. a genome) we
could think about indexing all substrings. The following theorem
shows why this is not such a good idea:

Theorem

A string s of length |s| = n has at most O(n2) different substrings.

Proof.

Idea: for each 0 ≤ i ≤ n − 1,

⋃

i≤j≤n−1

s[i ..j] (2)

is the set of substrings beginning at position i . Alphabet?

Hence, we need another way to represent this data.

Introduction suffix trees and tries naive construction linear time construction

towards suffix trees: implicit representation of substrings

Consider the string s = abab

string a b a b
position 0 1 2 3

Introduction suffix trees and tries naive construction linear time construction

towards suffix trees: implicit representation of substrings

Consider the string s = abab

string a b a b
position 0 1 2 3

we observe substrings:

a ab aba abab b ba bab

substrings are prefixes of suffixes: abab, bab, ab, b

each substring is implicitly represented by at least one suffix

at most O(n2) substrings but only O(n) suffixes!

Introduction suffix trees and tries naive construction linear time construction

towards suffix trees: implicit representation of substrings

Consider the string s = abab

string a b a b
position 0 1 2 3

we observe substrings:

a ab aba abab b ba bab

substrings are prefixes of suffixes: abab, bab, ab, b
each substring is implicitly represented by at least one suffix
at most O(n2) substrings but only O(n) suffixes!

Introduction suffix trees and tries naive construction linear time construction

towards suffix trees: implicit representation of substrings

Consider the string s = abab

string a b a b
position 0 1 2 3

we observe substrings:

a ab aba abab b ba bab

substrings are prefixes of suffixes: abab, bab, ab, b

each substring is implicitly represented by at least one suffix

at most O(n2) substrings but only O(n) suffixes!

Introduction suffix trees and tries naive construction linear time construction

towards suffix trees: implicit representation of substrings

Consider the string S = abab

we observe substrings:

a ab aba abab b ba bab

substrings are prefixes of suffixes:

abab, bab, ab, b

each substring is implicitly represented by at least one suffix
at most O(n2) substrings but only O(n) suffixes!

Introduction suffix trees and tries naive construction linear time construction

towards suffix trees: implicit representation of substrings

Consider the string S = abab

we observe substrings:

a ab aba abab b ba bab

substrings are prefixes of suffixes:

abab, bab, ab, b

each substring is implicitly represented by at least one suffix
at most O(n2) substrings but only O(n) suffixes!

Introduction suffix trees and tries naive construction linear time construction

towards suffix trees: implicit representation of substrings

Consider the string S = abab

we observe substrings a, ab, aba, abab, b, ba and bab

substrings are prefixes of suffixes: abab, bab, ab, b

each substring is implicitly represented by at least one suffix

at most O(n2) substrings but only O(n) suffixes!

We append a unique character (sentinel) $ to the end of s:

S$ = abab$

Reason?

Introduction suffix trees and tries naive construction linear time construction

towards suffix trees: common prefixes

Given all suffixes abab$, bab$, ab$, b$, $ we observe

ab is longest common prefix for abab$ and ab$

b is longest common prefix for bab$ and b$

$ is longest prefix of $

This gives us three partial trees:

ab

ab$ $

b

ab$ $

$

Introduction suffix trees and tries naive construction linear time construction

a suffix tree

Combining the three partial trees leads to a complete suffix tree:

ab

0

ab$
2

$

b

1

ab$
3

$

4

$

string a b a b $
position 0 1 2 3 4

More on suffix tree construction later ...

Introduction suffix trees and tries naive construction linear time construction

formalities: suffix tree

Definition (suffix tree)

A suffix tree ST (S$) for a sequence S ∈ A+

1 edges labeled by non-empty strings over A

2 for every node only one edge begins with same a ∈ A

3 compact, ie. has no internal nodes with less than two
successors (in contrast to suffix trie)

4 represents all substrings of S

Introduction suffix trees and tries naive construction linear time construction

a suffix tree is compact, a suffix trie is not

ab

0

ab$
2

$

b

1

ab$
3

$
4

$

a

b

a

b

0

$

2

$

b

a

b

1

$

3

$
4

$

Introduction suffix trees and tries naive construction linear time construction

searching in a suffix tree

Searching a query sequence q in a suffix tree is easy. At internal
nodes we look for a branch that starts with next character in q, on
edges we simply continue to match the labels.
Lets search the query q = ab.

the search starts with the first character of q, q[0] = a

ab

0

ab$
2

$

b

1

ab$
3

$

4

$

Introduction suffix trees and tries naive construction linear time construction

searching in a suffix tree

Searching a query sequence q in a suffix tree is easy. At internal
nodes we look for a branch that starts with next character in q, on
edges we simply continue to match the labels.
Lets search the query q = ab.

the search starts with the first character of q, q[0] = a

and continues with the next character q[1] = b

ab

0

ab$
2

$

b

1

ab$
3

$

4

$

Introduction suffix trees and tries naive construction linear time construction

searching in a suffix tree

Searching a query sequence q in a suffix tree is easy. At internal
nodes we look for a branch that starts with next character in q, on
edges we simply continue to match the labels.
Lets search the query q = ab.

the search starts with the first character of q, q[0] = a

and continues with the next character q[1] = b

we immediately see: q occurs twice in S$ at positions 0 and 2.

ab

0

ab$
2

$

b

1

ab$
3

$

4

$

Introduction suffix trees and tries naive construction linear time construction

complexity considerations

The suffix tree ST (S) for the sequence S$ with |S | = n

hast at most n − 1 internal nodes and n leaves ⇒ Ospace(n)

Due to their compactness suffix trees require much less space in
practice compared to suffix tries.

for a query of length m, searches in the suffix tree take at
most m character comparisons ⇒ Osearch(m)

Introduction suffix trees and tries naive construction linear time construction

naive construction: top-down

In order to devise an algorithm to construct suffix trees, we will
make use of the following observations:

a node α represents all suffixes of S$ that start with the same
prefix u

only one outgoing edge from α begins with same a ∈ A

we can restrict our evaluation to at most |A| subsets of
suffixes with uav , where a ∈ A and v ∈ A∗

Introduction suffix trees and tries naive construction linear time construction

naive construction: simplifications

We will now devise the algorithm topdown. For reasons of
simplicity we assume

To construct the suffix tree we call topdown (U, 0), where U
is a set of pairs that initially(!) holds all suffixes and their
positions in S$, ie.
U = {(s, i) | S$[i ..n − 1] = s, 0 ≤ i ≤ n − 1}

let getlcp(U) be a function evaluates the longest common
prefix for all strings s in (s, i) ∈ U

let insertEdge(α, u, β) be a function that inserts an edge
with label u between the nodes α and β.

let insertLeaf(α, u, i) be a function that attaches a leaf i
with edge label u to α.

Introduction suffix trees and tries naive construction linear time construction

naive construction: pseudo-code topdown

Require: set of pairs U, length of lcp ℓ

∀a ∈ A : Pa = ∅, node α

for all (s, i) ∈ U do
a := s[ℓ]
Pa := Pa ∪ (s[ℓ + 1..n − 1], i)

end for
for all a ∈ A do

if |Pa| > 1 then
v := getlcp(Pa)
β := topdown(Pa, |v |)
insertEdge(α, av , β)

else if |Pa| = 1 then
(s, i) := Pa

attachLeaf(α, as, i)
end if

end for
return α

Introduction suffix trees and tries naive construction linear time construction

naive construction: pseudo-code topdown

Require: set of pairs U, length of lcp ℓ

∀a ∈ A : Pa = ∅, node α

for all (s, i) ∈ U do
a := s[ℓ]
Pa := Pa ∪ (s[ℓ + 1..n − 1], i)

end for
for all a ∈ A do

if |Pa| > 1 then
v := getlcp(Pa)
β := topdown(Pa, |v |)
insertEdge(α, av , β)

else if |Pa| = 1 then
(s, i) := Pa

attachLeaf(α, as, i)
end if

end for
return α

partition wrt. to first
character not belonging
to the lcp

Introduction suffix trees and tries naive construction linear time construction

naive construction: pseudo-code topdown

Require: set of pairs U, length of lcp ℓ

∀a ∈ A : Pa = ∅, node α

for all (s, i) ∈ U do
a := s[ℓ]
Pa := Pa ∪ (s[ℓ + 1..n − 1], i)

end for
for all a ∈ A do

if |Pa| > 1 then
v := getlcp(Pa)
β := topdown(Pa, |v |)
insertEdge(α, av , β)

else if |Pa| = 1 then
(s, i) := Pa

attachLeaf(α, as, i)
end if

end for
return α

partition wrt. to first
character not belonging
to the lcp

if there are >= 2 suffixes
get lcp for the set
call topdown
insert edge

Introduction suffix trees and tries naive construction linear time construction

naive construction: pseudo-code topdown

Require: set of pairs U, length of lcp ℓ

∀a ∈ A : Pa = ∅, node α

for all (s, i) ∈ U do
a := s[ℓ]
Pa := Pa ∪ (s[ℓ + 1..n − 1], i)

end for
for all a ∈ A do

if |Pa| > 1 then
v := getlcp(Pa)
β := topdown(Pa, |v |)
insertEdge(α, av , β)

else if |Pa| = 1 then
(s, i) := Pa

attachLeaf(α, as, i)
end if

end for
return α

partition wrt. to first
character not belonging
to the lcp

if there are >= 2 suffixes
get lcp for the set
call topdown
insert edge

this suffix is unique
we attach a leaf

Introduction suffix trees and tries naive construction linear time construction

naive construction: example

For s = abab$: U = {(abab$, 0), (bab$, 1), (ab$, 2), (b$, 3), ($, 4)}

→ first call

Pa = {(bab$, 0), (b$, 2)}, getlcp(Pa) = b, | getlcp(Pa) | = 1

Introduction suffix trees and tries naive construction linear time construction

naive construction: example

For s = abab$: U = {(abab$, 0), (bab$, 1), (ab$, 2), (b$, 3), ($, 4)}

→ first call

Pa = {(bab$, 0), (b$, 2)}, getlcp(Pa) = b, | getlcp(Pa) | = 1

Pb = {(ab$, 1), ($, 3)}, getlcp(Pb) = ǫ, | getlcp(Pb) | = 0

Introduction suffix trees and tries naive construction linear time construction

naive construction: example

For s = abab$: U = {(abab$, 0), (bab$, 1), (ab$, 2), (b$, 3), ($, 4)}

→ first call

Pa = {(bab$, 0), (b$, 2)}, getlcp(Pa) = b, | getlcp(Pa) | = 1

Pb = {(ab$, 1), ($, 3)}, getlcp(Pb) = ǫ, | getlcp(Pb) | = 0

→ second call

Pa = {(b$, 0)} =⇒ addLeaf(αa, ab$, 0)

αa

0

ab$

Introduction suffix trees and tries naive construction linear time construction

naive construction: example

For s = abab$: U = {(abab$, 0), (bab$, 1), (ab$, 2), (b$, 3), ($, 4)}

→ first call

Pa = {(bab$, 0), (b$, 2)}, getlcp(Pa) = b, | getlcp(Pa) | = 1

Pb = {(ab$, 1), ($, 3)}, getlcp(Pb) = ǫ, | getlcp(Pb) | = 0

→ second call

Pa = {(b$, 0)} =⇒ addLeaf(αa, ab$, 0)
P$ = {(ǫ, 2)} =⇒ addLeaf(αa, $, 2)

αa

0

ab$
2

$

Introduction suffix trees and tries naive construction linear time construction

naive construction: example

For s = abab$: U = {(abab$, 0), (bab$, 1), (ab$, 2), (b$, 3), ($, 4)}

→ first call

Pa = {(bab$, 0), (b$, 2)}, getlcp(Pa) = b, | getlcp(Pa) | = 1

Pb = {(ab$, 1), ($, 3)}, getlcp(Pb) = ǫ, | getlcp(Pb) | = 0
→ second call

Pa = {(b$, 0)} =⇒ addLeaf(αa, ab$, 0)
P$ = {(ǫ, 2)} =⇒ addLeaf(αa, $, 2)

=⇒ insertEdge(α, ab, αa)

α

αa

ab

0

ab$
2

$

Can you continue this example?

Introduction suffix trees and tries naive construction linear time construction

naive construction: complexity

The naive construction does not perform very well

complexity of naive suffix tree construction is O(n2). Proof?

We can do better:

Ukkonen has devised an online construction algorithm that
runs in O(n).

McCreight’s O(n)-algorithm also runs slightly faster in
practice.

Introduction suffix trees and tries naive construction linear time construction

Growing trees

Question

Assume you have built a suffix tree for the string

aba$

Which modifications are necessary to obtain the suffix tree for

ababa$

Can the old tree be of any use?

Introduction suffix trees and tries naive construction linear time construction

McCreight’s algorithm

The idea: successively merge ST (S$[i ..n]) with
ST (S$[i + 1..n]), i ∈ [0, n]

exploits the properties of longest common prefixes

Definition (head)

The head(i) of some suffix S$[i ..n], 0≤ i≤n−1 is the longest
common prefix of with S$[j ..n], where j< i .

Definition (tail)

The tail(i) is simply the rest: S$[i ..n] = head(i)tail(i)

Introduction suffix trees and tries naive construction linear time construction

heads up: McCreight’s trick

To appreciate the trick we need to understand the following
observation:

1 Once the suffix tree for S$[0..n]..S$[i ..n] is build, we need to
update only those parts of ST that are “affected“ by
introducing the suffix S$[i + 1..n]

2 Only parts beyond the head, ie. within the tail, may be
“affected“.

Introduction suffix trees and tries naive construction linear time construction

heads up: McCreight’s trick

Beweis.

Let ST(S) be as suffix tree of a string S. Assume the string av has
a prefix implicitly represented in ST (S). Hence, there is a
search-path from the root to some edge or node (leaf?)
⇒ the search-path is of length maxj≤|S|lcp(av ,S [j ..n])=ℓ

⇒ lcp(v ,S [j ..n])=k≥ℓ−1
⇒ substring v [0...ℓ−1] is also implicitly represented by ST(S)
⇒ only suffix tree modifications below internal nodes or edge
labels representing v [ℓ−1..n] are necessary

Hence, finding an inexpensive way to locate the head yields an
inexpensive algorithm. Let’s pretend we’ve found it:

magic(head(i)) delivers a position within ST with p representing
the substring S$[i+1..i+ℓ−1]. p may be on an edge or a vertex.

Introduction suffix trees and tries naive construction linear time construction

linear construction: algorithm M

Require: tree for the suffix S$[0..n-1]
for i in 0 to n − 2 do

if head(i) = ǫ then
head(i+1) := scan(ST (ǫ), S$[i+1..n])
if head(i+1) ends in edge then

addNode(head(i+1))
end if
addLeaf(head(i+1), tail(i+1), i+1)

else
p := magic(head(i))
if p ends in edge then

head(i+1) = p

else if p ends in vertex then
head(i+1) = scan(ST(p), tail(i))

end if
if head(i + 1) ends in edge then

addNode(head(i+1))
end if
addLeaf(head(i+1), tail(i+1), i+1)

end if
end for

Introduction suffix trees and tries naive construction linear time construction

linear construction: algorithm M

Require: tree for the suffix S$[0..n-1]
for i in 0 to n − 2 do

if head(i) = ǫ then
head(i+1) := scan(ST (ǫ), S$[i+1..n])
if head(i+1) ends in edge then

addNode(head(i+1))
end if
addLeaf(head(i+1), tail(i+1), i+1)

else
p := magic(head(i))
if p ends in edge then

head(i+1) = p

else if p ends in vertex then
head(i+1) = scan(ST(p), tail(i))

end if
if head(i + 1) ends in edge then

addNode(head(i+1))
end if
addLeaf(head(i+1), tail(i+1), i+1)

end if
end for

i 0
S[i+1..n] baba$
head(i) ǫ

tail(i) bbaba$

ǫ

0

bbaba$

Introduction suffix trees and tries naive construction linear time construction

linear construction: algorithm M

Require: tree for the suffix S$[0..n-1]
for i in 0 to n − 2 do

if head(i) = ǫ then
head(i+1) := scan(ST (ǫ), S$[i+1..n])
if head(i+1) ends in edge then

addNode(head(i+1))
end if
addLeaf(head(i+1), tail(i+1), i+1)

else
p := magic(head(i))
if p ends in edge then

head(i+1) = p

else if p ends in vertex then
head(i+1) = scan(ST(p), tail(i))

end if
if head(i + 1) ends in edge then

addNode(head(i+1))
end if
addLeaf(head(i+1), tail(i+1), i+1)

end if
end for

i 0
S[i+1..n] baba$
head(i) ǫ

tail(i) bbaba$

ǫ

0

bbaba$

Introduction suffix trees and tries naive construction linear time construction

linear construction: algorithm M

Require: tree for the suffix S$[0..n-1]
for i in 0 to n − 2 do

if head(i) = ǫ then
head(i+1) := scan(ST (ǫ), S$[i+1..n])
if head(i+1) ends in edge then

addNode(head(i+1))
end if
addLeaf(head(i+1), tail(i+1), i+1)

else
p := magic(head(i))
if p ends in edge then

head(i+1) = p

else if p ends in vertex then
head(i+1) = scan(ST(p), tail(i))

end if
if head(i + 1) ends in edge then

addNode(head(i+1))
end if
addLeaf(head(i+1), tail(i+1), i+1)

end if
end for

i 0
S[i+1..n] baba$
head(i) ǫ

tail(i) bbaba$

ǫ

b

0

baba$

Introduction suffix trees and tries naive construction linear time construction

linear construction: algorithm M

Require: tree for the suffix S$[0..n-1]
for i in 0 to n − 2 do

if head(i) = ǫ then
head(i+1) := scan(ST (ǫ), S$[i+1..n])
if head(i+1) ends in edge then

addNode(head(i+1))
end if
addLeaf(head(i+1), tail(i+1), i+1)

else
p := magic(head(i))
if p ends in edge then

head(i+1) = p

else if p ends in vertex then
head(i+1) = scan(ST(p), tail(i))

end if
if head(i + 1) ends in edge then

addNode(head(i+1))
end if
addLeaf(head(i+1), tail(i+1), i+1)

end if
end for

i 0
S[i+1..n] baba$
head(i) ǫ

tail(i) bbaba$

ǫ

b

1

aba$

0

baba$

Introduction suffix trees and tries naive construction linear time construction

linear construction: algorithm M

Require: tree for the suffix S$[0..n-1]
for i in 0 to n − 2 do

if head(i) = ǫ then
head(i+1) := scan(ST (ǫ), S$[i+1..n])
if head(i+1) ends in edge then

addNode(head(i+1))
end if
addLeaf(head(i+1), tail(i+1), i+1)

else
p := magic(head(i))
if p ends in edge then

head(i+1) = p

else if p ends in vertex then
head(i+1) = scan(ST(p), tail(i))

end if
if head(i + 1) ends in edge then

addNode(head(i+1))
end if
addLeaf(head(i+1), tail(i+1), i+1)

end if
end for

i 1
S[i+1..n] aba$
head(i) b
tail(i) aba$

ǫ

b

1

aba$

0

baba$

S$[i + 1..ℓ− 1] not yet in tree
⇒ magic(head(i)) = ǫ

Introduction suffix trees and tries naive construction linear time construction

linear construction: algorithm M

Require: tree for the suffix S$[0..n-1]
for i in 0 to n − 2 do

if head(i) = ǫ then
head(i+1) := scan(ST (ǫ), S$[i+1..n])
if head(i+1) ends in edge then

addNode(head(i+1))
end if
addLeaf(head(i+1), tail(i+1), i+1)

else
p := magic(head(i))
if p ends in edge then

head(i+1) = p

else if p ends in vertex then
head(i+1) = scan(ST(p), tail(i))

end if
if head(i + 1) ends in edge then

addNode(head(i+1))
end if
addLeaf(head(i+1), tail(i+1), i+1)

end if
end for

i 1
S[i+1..n] aba$
head(i) b
tail(i) aba$

ǫ

b

1

aba$

0

baba$

Introduction suffix trees and tries naive construction linear time construction

linear construction: algorithm M

Require: tree for the suffix S$[0..n-1]
for i in 0 to n − 2 do

if head(i) = ǫ then
head(i+1) := scan(ST (ǫ), S$[i+1..n])
if head(i+1) ends in edge then

addNode(head(i+1))
end if
addLeaf(head(i+1), tail(i+1), i+1)

else
p := magic(head(i))
if p ends in edge then

head(i+1) = p

else if p ends in vertex then
head(i+1) = scan(ST(p), tail(i))

end if
if head(i + 1) ends in edge then

addNode(head(i+1))
end if
addLeaf(head(i+1), tail(i+1), i+1)

end if
end for

i 1
S[i+1..n] aba$
head(i) b
tail(i) aba$

ǫ

2

aba$ b

1

aba$

0

baba$

Introduction suffix trees and tries naive construction linear time construction

linear construction: algorithm M

Require: tree for the suffix S$[0..n-1]
for i in 0 to n − 2 do

if head(i) = ǫ then
head(i+1) := scan(ST (ǫ), S$[i+1..n])
if head(i+1) ends in edge then

addNode(head(i+1))
end if
addLeaf(head(i+1), tail(i+1), i+1)

else
p := magic(head(i))
if p ends in edge then

head(i+1) = p

else if p ends in vertex then
head(i+1) = scan(ST(p), tail(i))

end if
if head(i + 1) ends in edge then

addNode(head(i+1))
end if
addLeaf(head(i+1), tail(i+1), i+1)

end if
end for

i 2
S[i+1..n] ba$
head(i) ǫ

tail(i) aba$

ǫ

2

aba$ b

1

aba$

0

baba$

Introduction suffix trees and tries naive construction linear time construction

linear construction: algorithm M

Require: tree for the suffix S$[0..n-1]
for i in 0 to n − 2 do

if head(i) = ǫ then
head(i+1) := scan(ST (ǫ), S$[i+1..n])
if head(i+1) ends in edge then

addNode(head(i+1))
end if
addLeaf(head(i+1), tail(i+1), i+1)

else
p := magic(head(i))
if p ends in edge then

head(i+1) = p

else if p ends in vertex then
head(i+1) = scan(ST(p), tail(i))

end if
if head(i + 1) ends in edge then

addNode(head(i+1))
end if
addLeaf(head(i+1), tail(i+1), i+1)

end if
end for

i 2
S[i+1..n] ba$
head(i) ǫ

tail(i) aba$

ǫ

2

aba$ b

a

1

ba$

0

baba$

Introduction suffix trees and tries naive construction linear time construction

linear construction: algorithm M

Require: tree for the suffix S$[0..n-1]
for i in 0 to n − 2 do

if head(i) = ǫ then
head(i+1) := scan(ST (ǫ), S$[i+1..n])
if head(i+1) ends in edge then

addNode(head(i+1))
end if
addLeaf(head(i+1), tail(i+1), i+1)

else
p := magic(head(i))
if p ends in edge then

head(i+1) = p

else if p ends in vertex then
head(i+1) = scan(ST(p), tail(i))

end if
if head(i + 1) ends in edge then

addNode(head(i+1))
end if
addLeaf(head(i+1), tail(i+1), i+1)

end if
end for

i 2
S[i+1..n] ba$
head(i) ǫ

tail(i) aba$

ǫ

2

aba$ b

a

3

$

1

ba$

0

baba$

Introduction suffix trees and tries naive construction linear time construction

linear construction: algorithm M

Require: tree for the suffix S$[0..n-1]
for i in 0 to n − 2 do

if head(i) = ǫ then
head(i+1) := scan(ST (ǫ), S$[i+1..n])
if head(i+1) ends in edge then

addNode(head(i+1))
end if
addLeaf(head(i+1), tail(i+1), i+1)

else
p := magic(head(i))
if p ends in edge then

head(i+1) = p

else if p ends in vertex then
head(i+1) = scan(ST(p), tail(i))

end if
if head(i + 1) ends in edge then

addNode(head(i+1))
end if
addLeaf(head(i+1), tail(i+1), i+1)

end if
end for

i 3
S[i+1..n] a$
head(i) ba
tail(i) $

ǫ

2

aba$ b

a

3

$

1

ba$

0

baba$

S$[i + 1..ℓ− 1]=a in tree ⇒
p points to a-edge of root

Introduction suffix trees and tries naive construction linear time construction

linear construction: algorithm M

Require: tree for the suffix S$[0..n-1]
for i in 0 to n − 2 do

if head(i) = ǫ then
head(i+1) := scan(ST (ǫ), S$[i+1..n])
if head(i+1) ends in edge then

addNode(head(i+1))
end if
addLeaf(head(i+1), tail(i+1), i+1)

else
p := magic(head(i))
if p ends in edge then

head(i+1) = p

else if p ends in vertex then
head(i+1) = scan(ST(p), tail(i))

end if
if head(i + 1) ends in edge then

addNode(head(i+1))
end if
addLeaf(head(i+1), tail(i+1), i+1)

end if
end for

i 3
S[i+1..n] a$
head(i) ba
tail(i) $

ǫ

a

2

ba$

b

a

3

$

1

ba$

0

baba$

Introduction suffix trees and tries naive construction linear time construction

linear construction: algorithm M

Require: tree for the suffix S$[0..n-1]
for i in 0 to n − 2 do

if head(i) = ǫ then
head(i+1) := scan(ST (ǫ), S$[i+1..n])
if head(i+1) ends in edge then

addNode(head(i+1))
end if
addLeaf(head(i+1), tail(i+1), i+1)

else
p := magic(head(i))
if p ends in edge then

head(i+1) = p

else if p ends in vertex then
head(i+1) = scan(ST(p), tail(i))

end if
if head(i + 1) ends in edge then

addNode(head(i+1))
end if
addLeaf(head(i+1), tail(i+1), i+1)

end if
end for

i 3
S[i+1..n] a$
head(i) ba
tail(i) $

ǫ

a

2

ba$

4

$

b

a

3

$

1

ba$

0

baba$

Introduction suffix trees and tries naive construction linear time construction

linear construction: algorithm M

Require: tree for the suffix S$[0..n-1]
for i in 0 to n − 2 do

if head(i) = ǫ then
head(i+1) := scan(ST (ǫ), S$[i+1..n])
if head(i+1) ends in edge then

addNode(head(i+1))
end if
addLeaf(head(i+1), tail(i+1), i+1)

else
p := magic(head(i))
if p ends in edge then

head(i+1) = p

else if p ends in vertex then
head(i+1) = scan(ST(p), tail(i))

end if
if head(i + 1) ends in edge then

addNode(head(i+1))
end if
addLeaf(head(i+1), tail(i+1), i+1)

end if
end for

i 4
S[i+1..n] $
head(i) a
tail(i) $

ǫ

a

2

ba$

4

$

b

a

3

$

1

ba$

0

baba$

What will happen now?

Introduction suffix trees and tries naive construction linear time construction

magic

For some head(i)=S$[i ..i+ℓ], the function magic(head(i))
delivers a position p ∈ ST (S) with p representing the substring
S$[i+1..i+ℓ−1]. It is realized using suffix links:

suffix links are only defined on nodes

to use suffix link, go back to parent node

while going back remember all edge labels

jump to another node via suffix link

rematch the edge labels

done. we reached the location for S$[i+1..i+ℓ−1].

Suffix links can be updated during the construction of the suffix
tree with algorithm M.

Introduction suffix trees and tries naive construction linear time construction

Suffix trees: a stringology toolbox

1 string search

2 longest common substrings (two strings)

3 longest repeated substrings (one string)

4 for each suffix of a pattern, get length of the longest match

5 shortest unique substrings

6 ...

Introduction suffix trees and tries naive construction linear time construction

Abschlussveranstaltung SWT-Praktikum 2011

Im SWT-Praktikum stellen die studentischen Teams im 4. Semester ihre
Fähigkeiten unter Beweis, ein größeres Software-Projekt im Umfang von
etwa 1 000 Mannstunden

”
nach den Regeln der Kunst“ gemeinschaftlich

zu planen und umzusetzen.
In der Abschlussveranstaltung

am 7. Juli 2011, 9:15 bis 10:45 Uhr im Hs 10

präsentieren die Teams in Vorträgen und Demonstrationen von je etwa 10
Minuten die Ergebnisse ihrer Arbeit der Öffentlichkeit.

Dazu sind alle Studenten des ersten Studienjahres, die sich
bereits jetzt über die Anforderungen und Ergebnisse des
SWT-Praktikums im 4. Semester informieren wollen, herz-
lich eingeladen.

	Introduction
	suffix trees and tries
	naive construction
	linear time construction

