ADS: Algorithmen und Datenstrukturen 2 Teil III

Peter F. Stadler & Konstantin Klemm

Bioinformatics Group, Dept. of Computer Science & Interdisciplinary Center for Bioinformatics, **University of Leipzig**

20. April 2011

Traversierung

Durchlaufen eines Graphen, bei dem jeder vom gewählten Startknoten erreichbare Knoten (bzw. jede Kante) genau 1-mal aufgesucht wird. Jeweils nächster besuchter Knoten hat mindestens einen Nachbarn in der zuvor besuchten Knotenmenge.

Generische Lösungsmöglichkeit für Graphen G = (V, E):

```
FOREACH v in V DO {markiere v als unbearbeitet};
B={s}; // Menge besuchter Knoten, anfangs = Startknoten s
markiere s als bearbeitet;
WHILE es gibt unbearbeiteten Knoten v'
  mit (v,v') in E und v in B
  { B = B + {v'}: markiere v':}
```

Realisierungen unterscheiden sich bezüglich Verwaltung der noch abzuarbeitenden Knotenmenge und Auswahl der jeweils nächsten Kante.

Breiten- und Tiefendurchlauf

Breitendurchlauf (Breadth First Search, BFS)

- ausgehend von Startknoten werden zunächst alle direkt erreichbaren Knoten bearbeitet
- danach die über mindestens zwei Kanten vom Startknoten erreichbaren Knoten, dann die über drei Kanten usw.
- es werden also erst die Nachbarn besucht, bevor zu den Söhnen gegangen wird.
- kann mit FIFO-Datenstruktur f
 ür noch zu bearbeitende Knoten realisiert werden.

Tiefendurchlauf (Depth First Search, DFS)

- ausgehend von Startknoten werden zunächst rekursiv alle Söhne (Nachfolger) bearbeitet; erst dann wird zu den Nachbarn gegangen
- kann mit Stack-Datenstruktur f
 ür noch zu bearbeitende Knoten realisiert werden
- Verallgemeinerung der Traversierung von Bäumen.

Breitensuche (BFS)

Bearbeite einen Knoten, der in n Schritten von u erreichbar ist, erst wenn alle Knoten abgearbeitet wurden, die in n-1 Schritten erreichbar sind.

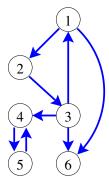
- gerichteter Graph G = (V, E); Startknoten s; Q sei FIFO-Warteschlange.
- zu jedem Knoten u werden der aktuelle Farbwert und der Vorgänger p[u], von dem aus u erreicht wurde, gespeichert.
- p-Werte liefern nach Abarbeitung für zusammenhängende Graphen einen Spannbaum.

Breitensuche: Algorithmus

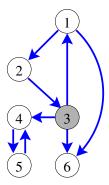
```
BFS(G,s)
  FOREACH v in V DO {farbe(v)=weiss; p[v]=null; }
  farbe[s]=grau; INIT(Q); Q=ENQUEUE(Q,s);
  WHILE NOT (EMPTY(Q)) DO
  ₹
    v=FRONT(Q):
    FOREACH u in succ(v) DO
      If farbe[u]=weiss THEN
      { farbe[u]=grau; p[u]=v; Q=ENQUEUE(Q,u);}
    }
    DEQUEUE(Q); farbe[v]=schwarz;
  }
```

Farben:

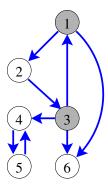
weiss=unbearbeitet, grau=in Bearbeitung, schwarz=bearbeitet



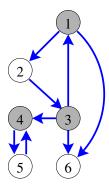
$$Q = []$$



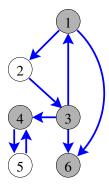
$$Q = [3]$$



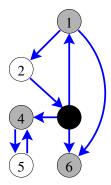
$$Q = [3, 1]$$



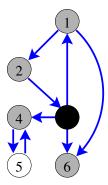
$$Q = [3, 1, 4]$$



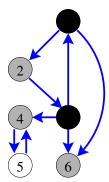
$$Q = [3, 1, 4, 6]$$



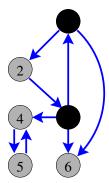
$$Q = [1, 4, 6]$$



$$Q = [1, 4, 6, 2]$$



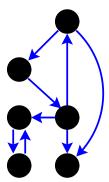
$$Q = [4, 6, 2]$$



$$Q = [4, 6, 2, 5]$$



$$Q = [6, 2, 5]$$



$$Q = []$$

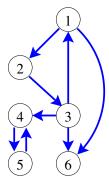
Tiefensuche (DFS)

- Bearbeite einen Knoten v erst dann, wenn alle seine Söhne bearbeitet sind (außer wenn ein Sohn auf dem Weg zu v liegt)
- gerichteter Graph G = (V, E);
- zu jedem Knoten v werden gespeichert: der aktuelle Farbwert farbe[v], die Zeitpunkte in[v] und out[v], zu denen der Knoten im Rahmen der Tiefensuche erreicht bzw. verlassen wurde und der Vorgänger p[v], von dem aus v erreicht wurde
- die in- bzw. out-Zeitpunkte ergeben eine Reihenfolge der Knoten analog zur Vor- bzw. Nachordnung bei Bäumen.

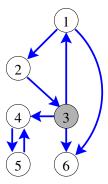
Tiefensuche: Algorithmus

```
DFS(G)
FOR EACH v in V do { farbe[v]=weiss; p[v]=null; }
zeit=0
for each v in V do {if farbe[v]=weiss then DFS-visit[v]}

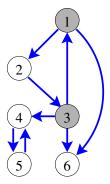
DFS-visit(G,v) // rekursive Methode zur Tiefensuche
farbe[v]=grau; zeit=zeit+1; in[v]=zeit;
FOR EACH u in succ(v) DO
{ IF farbe[u]=weiss THEN { p[u]=v; DFS-visit[u];}}
farbe[v]=schwarz; zeit=zeit+1; out[v]=zeit;
```



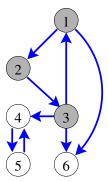
v	in[v]	out[v]
1	2	7
2	3	4
3	1	12
4		11
5	9	10
6	5	6



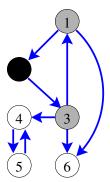
v	in[v]	out[v]
1	2	7
2	3	4
3	1	12
4		11
5	9	10
6	5	6



v	in[v]	out[v]
1	2	7
2	3	4
3	1	12
4		11
5	9	10
6	5	6



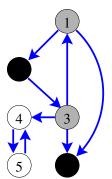
v	in[v]	out[v]
1	2	7
2	3	4
3	1	12
4		11
5	9	10
6	5	6



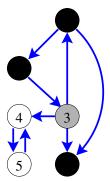
v	in[v]	out[v]
1	2	7
2	3	4
3	1	12
4		11
5	9	10
6	5	6



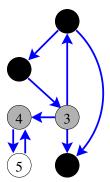
v	in[v]	out[v]
1	2	7
2	3	4
3	1	12
4		11
5	9	10
6	5	6



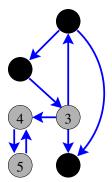
v	in[v]	out[v]
1	2	7
2	3	4
3	1	12
4		11
5	9	10
6	5	6



v	in[v]	out[v]
1	2	7
2	3	4
3	1	12
4		11
5	9	10
6	5	6

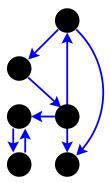


v	in[v]	out[v]
1	2	7
2	3	4
3	1	12
4	8	11
5	9	10
6	5	6



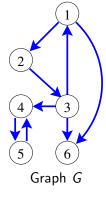
v	in[v]	out[v]
1	2	7
2	3	4
3	1	12
4	8	11
5	9	10
6	5	6

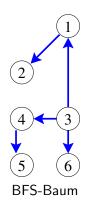
Tiefensuche: Beispiel

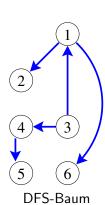


v	in[v]	out[v]
1	2	7
2	3	4
3	1	12
4	8	11
5	9	10
6	5	6

Bäume aus Breiten- und Tiefensuche



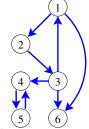




Starke Zusammenhangskomponenten

Ein gerichteter Graph G = (V, E) heißt stark zusammenhängend, wenn für alle $u, v \in V$ gilt: Es gibt einen Pfad von u nach v.

Eine starke Zusammenhangskomponente von G ist ein maximaler stark zusammenhängender Teilgraph von G.



Jeder Knoten eines Graphen ist in genau einer starken Zusammenhangskomponente enthalten. Wieso?

Starke Zusammenhangskomponenten

Ein gerichteter Graph G = (V, E) heißt stark zusammenhängend, wenn für alle $u, v \in V$ gilt: Es gibt einen Pfad von u nach v.

Eine starke Zusammenhangskomponente von G ist ein maximaler stark zusammenhängender Teilgraph von G.

Jeder Knoten eines Graphen ist in genau einer starken Zusammenhangskomponente enthalten. Wieso?

gegenseitige Erreichbarkeit = Aquivalenzrelation

Sei G = (V, E) ein gerichteter Graph. Sind Knoten $u, v \in V$ gegenseitig erreichbar, schreiben wir $u \sim v$. Die so definierte Relation \sim auf V ist eine Äquivalenzrelation also

- symmetrisch
- transitiv und
- reflexiv

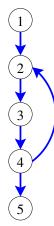
Die Knotenmengen der starken Zusammenhangskomponenten von G sind die Äquivalenzklassen von \sim .

Starke Zsh-Komponenten durch Tiefensuche

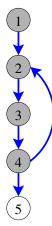
- Führe Tiefensuche (DFS) auf G aus.
- Für jeden Knoten v berechne dabei 1[v] = "frühester"
 Knoten, der von v erreichbar ist in der durch in[] gegebenen Reihenfolge.
- Wenn alle Kindsknoten von v abgearbeitet sind und 1[v]=in[v], ist v die "Wurzel" einer starken Zusammenhangskomponente. Deren Knoten werden dann gleich ausgegeben und nicht mehr weiter betrachtet (denn jeder Knoten ist in nur einer Komponente).

Algorithmus von Tarjan (1972)

```
Tarjan-visit(G,v)
farbe[v]=grau; zeit=zeit+1; in[v]=zeit; l[v]=zeit;
PUSH(S,v)
FOR EACH u in succ(v) DO {
  IF farbe[u]=weiss THEN
  { Tarjan-visit[u]; l[v]=min(l[v],l[u]);}
  ELSEIF u in S THEN l[v]=min(l[v],in[u]);
}
IF (l[v]=in[v]) {
  Ausgabe("starke ZshK":)
  DO { u=TOP(S); Ausgabe(u); POP(S); }
  UNTIL u=v;
}
farbe[v]=schwarz; zeit=zeit+1;
```

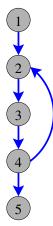


v	in[v]	1[v]
1	1	1
2	2	2
3	3	3
4	4	2
5	5	
Zshk	5	
Zshk	2,3,4	
7.1.1	-1	



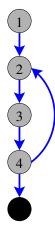
v	in[v]	1[v]
1	1	1
2	2	2
3	3	3
4	4	2
5	5	
Zshk	: 5	
7.1.1	0.2.4	

Tarjan: Beispiel

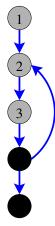


v	in[v]	1[v]
1	1	1
2	2	2
3	3	3
4	4	2
5	5	5
7shk	. 5	

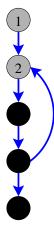
Zshk: 2,3,4 7shk: 1



v	in[v]	1[v]
1	1	1
2	2	2
3	3	3
4	4	2
5	5	5
Zshl	k: 5	
Zshl	k: 2,3,4	

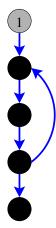


v	in[v]	1[v]
1	1	1
2	2	2
3	3	3
4	4	2
5	5	5
Zshk	k: 5	
7chl	2 3 1	



v	in[v]	1[v]
1	1	1
2	2	2
3	3	2
4	4	2
5	5	5
Zshk	x: 5	
7chl	2 3 /	

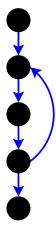
Tarjan: Beispiel



V	in[v]	1[v]
1	1	1
2	2	2
3	3	2
4	4	2
5	5	5
Zshk	: 5	

Zshk: 2,3,4

Tarjan: Beispiel

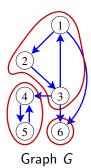


V	in[v]	1[v]
1	1	1
2	2	2
3	3	2
4	4	2
5	5	5
Zshk	κ: 5	
Zshk	c: 2,3,4	

Zshk: 1

Komponentengraph G^*

Fasse alle Knoten jeweils einer starken Zusammenhangskomponente zu einem einzigen Knoten zusammen. Kante von Komponente A nach Komponente B, wenn es $u \in A$ und $v \in B$ gibt, so daß (u, v) eine Kante in G ist.



Komponentengraph G^*

Erlaubt z.B. schnellere Berechnung der transitiven Hülle von G.