ADS: Algorithmen und Datenstrukturen 2 Teil XIII

Peter F. Stadler & Konstantin Klemm

Bioinformatics Group, Dept. of Computer Science & Interdisciplinary Center for Bioinformatics, **University of Leipzig**

30. Juni 2010

Evaluation

Online-Fragebogen zur Evaluation des Moduls unter https://www.umfragen.uni-bonn.de/leipzig/module

Modulkennung: 10-201-2001-2_SS10

Passwort: ia90L9aj

Optimierung mit Ameisen

Biologisches Vorbild

- Ameisen suchen Futter durch zunachst zufälliges Umherlaufen
- Hat eine Ameise eine Futterquelle aufgetan, so hinterlässt sie *Pheromone* entlang des Rückweges zum Bau.
- Dichte der abgegebenen Pheromone korreliert positiv mit Nutzen der Futterquelle (Quantität und Qualität des Futters, Kürze des Weges)
- Andere Ameisen werden durch Pheromone geleitet und verstärken die Pheromonspur.

Ameisenalgorithmus für TSP

• Kante von Stadt i nach Stadt j mit Pheromonstärke $\tau_{i,j}$ und Länge $d_{i,j}$ wird mit Wahrscheinlichkeit

$$p_{i,j} \propto au_{i,j}/d_{i,j}$$

gewählt.

• Nach Beendigung einer Rundreise der Gesamtlänge L werden für alle durchschrittenen Kanten (i,j) die Pheromonwerte erhöht mit

$$au_{i,j} \rightarrow t_{i,j} + 1/L$$

• Von allen Kanten (i,j) verdunsten Pheromone mit Rate ρ , also

$$\tau_{i,j} \rightarrow (1-\rho)t_{i,j}$$

Agentensysteme

- Konzept des Ameisenalgorithmus: Population von *Agenten* findet optimale Lösung.
- Kooperative Wechselwirkung zwischen Agenten essentiell Ameisen sind soziale Lebewesen.
- Ist Kooperation zwischen Agenten generisch? → Spieltheorie

Gefangenendilemma

Klassisches "Zwei-Personon-Nicht-Nullsummenspiel"

- Zwei Gefangene (Spieler) werden einer gemeinsam begangenen Tat vedächtigt und getrennt verhört.
- Jeder von beiden hat zwei Optionen (Strategien):

Cooperation C	Defektion D]
Aussage verweigern	Den anderen verpfeifen	

 Die Haftzeit eines Spielers ist abhängig von der eigenen Strategie und der des anderen Spielers.

Auszahlungsmatrix

Hafterlass (Payoff) für Spieler 1:

	Spieler 2 C	Spieler 2 D
Spieler 1 C	4	0
Spieler 1 D	5	3

und symmetrisch für Spieler 2.

Dilemma

- D zu spielen ist aus der Sicht eines Spielers stets am besten, egal was der andere tut.
- Aber: Wenn beide C spielen, ist die Summe der Payoffs beider Spieler am größten.

Dilemma

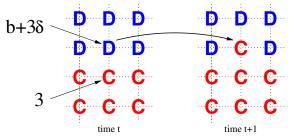
- Voll informierter rational entscheidender Spieler spielt immer
 D .
- \Longrightarrow keine Kooperation. Systemlösung nicht optimal.
- Was passiert, wenn Strategien aufgrund unvollständiger lokaler Information gewählt werden?

Räumliches Gefangenendilemma

- Viele (≫ 2) Spieler angeordnet auf einem Quadratgitter.
- Jeder Spieler spielt mit jedem seiner vier Nachbarn und berechnet Summe der Payoffs.
- Wenn einer oder mehr Nachbarn von Spieler i größeren Payoff als i selbst haben, so übernimmt i die Strategie von demjenigen Nachbarn mit dem grösten Payoff in seiner Nachbarschaft.

Original publikation: Nowak & May, Nature 359, 826 (1992).

Strategie-Anpassung



transformierte, allgemeinere Payoff-Matrix

	Spieler 2 C	Spieler 2 D
Spieler 1 C	1	0
Spieler 1 D	Ь	δ

mit 1 < b < 2 und $0 \le \delta \ll 1$

El Farol Bar Problem

- In der Bar El Farol (Santa Fe, New Mexico) wird jeden Donnerstag Abend ein Jazzkonzert veranstaltet.
- Es gibt etwa 100 interessierte Zuhörer ("Agenten"), doch fasst die Bar nur nur c=60 Personen, bei mehr wird's sehr ungemütlich.
- Absprachen zwischen Spielern nicht möglich

Problem: Wenn alle rational aufgrund derselben Information entscheiden, gehen entweder alle hin oder alle bleiben daheim. \Rightarrow nicht optimale Systemlösung.

Minority Game

Minority Game = Vereinfachung des El Farol Problems

- Jeder von n Spielern (n ungerade) wählt in jeder Spielrunde
 Zugehörigkeit zu Gruppe 0 oder zu Gruppe 1.
- Spieler, die in der kleineren Gruppe sind, erhalten einen Punkt, andere gehen leer aus.
- Im optimalen Fall umfasst die kleinere Gruppe [n/2] Spieler (maximaler Nutzen im System)
- Koordination der Spieler ohne Absprachen?

Spieler mit begrenzter Rationalität

- Jedem Spieler steht dieselbe Information zur Verfügung.
 Hier: Ausgang der letzten m Runden)
- Jeder Spieler benutzt sein eigenes Modell, um die beste Entscheidung vorherzusagen, z.B. für m=2

Ausgang letzte Runde	0	0	1	1
Ausg. vorletzte Runde	0	1	0	1
Entscheidung	1	1	0	1

- Jeder Spieler hat s solche Tabellen (Modelle), die vor Spielbeginn individuell zufällig zugelost werden.
- Jeder Spieler verwendet dasjenige seiner Modelle, das bisher am häufigsten die richtige Entscheidung vorhergesagt hat.

Minority Game: Hauptergebnis

- Durch beschränke Rationalität (kleine Anzahl Modelle s pro Spieler) werden hohe mittlere Punktzahlen erreicht.
- Insbesondere sind mittlere Punktzahlen erreichbar, die höher liegen als bei Zufallsentscheidungen (Münzwürfe).
- > Koordination der Spieler wird erreicht.

Original publikation: Challet & Zhang, Physica A 246, 407 (1997).