ADS: Algorithmen und Datenstrukturen 2 Teil VII: Suffix Trees

Steve Hoffmann

Bioinformatics Group, Dept. of Computer Science \& Interdisciplinary Center for Bioinformatics, University of Leipzig
21. Mai 2010

suffix and prefix: intuition

What is a suffix?

- "suffix?" is a suffix of "What is a suffix?"
- "a suffix?" is a suffix of "What is a suffix?"
- "What is a suffix?" for sure is a suffix of "What is a suffix?"

What is a prefix?

- "What" is a prefix of "What is a suffix?"
- "What is"is a prefix of "What is a suffix?"
- "What is a suffix?" for sure is a prefix of "What is a suffix?"

formalities: alphabet and characters

Let \mathcal{A} be a finite set, the alphabet.

- the elements of \mathcal{A} are characters.
- ϵ denotes the empty string.
- strings are written by juxtaposition of characters:

The set \mathcal{A}^{*} of strings over \mathcal{A} is defined by

$$
\begin{equation*}
\mathcal{A}^{*}=\bigcup_{i \geq 0} \mathcal{A}_{i} \tag{1}
\end{equation*}
$$

where $\mathcal{A}_{0}=\{\epsilon\}$ and $\mathcal{A}_{i+1}=\left\{a w \mid a \in \mathcal{A}, w \in A^{i}\right\}$.

- \mathcal{A}^{+}denotes a non-empty string

formalities: strings, suffixes and prefixes

Let s be a string over the alphabet \mathcal{A}

- let $|s|$ denote the length of s.

We assume a string of the form $s=u v w, u, v, w \in \mathcal{A}^{*}$:

- u is a prefix of s
- v is a substring of s
- w is a suffix of s

Note, that by using ϵ every string may be partioned to $u v w$!

Searching strings

Current genome projects and internet data bases accumulate massive amounts of sequences (texts). Searching such texts can be pretty cumbersome!

Considering a large sequence S over $\mathcal{A}=\{\mathrm{A}, \mathrm{C}, \mathrm{T}, \mathrm{G}\}$. We may ask:

- does ACTGCTTACGTACGGTA occur in S?
- how often does ACTGCTTACGTACGGTA occur in S ?
- where does ACTGCTTACGTACGGTA occur in S ?

For large sequences that are frequently queried we need more sophisticated strategies to answer these questions quickly.

Indexing

For a large string s that is frequently queried (ie. a genome) we could think about indexing all substrings. The following theorem shows why this is not such a good idea:

Theorem

A string s of length $|s|=n$ has at most $O\left(n^{2}\right)$ different substrings.

Proof.

Idea: for each $0 \leq i \leq n-1$,

$$
\begin{equation*}
\bigcup_{i \leq j \leq n-1} s[i . . j] \tag{2}
\end{equation*}
$$

is the set of substrings beginning at position i. Alphabet?
Hence, we need another way to represent this data.

towards suffix trees: implicit representation of substrings

Consider the string $s=a b a b$

- substrings are prefixes of suffixes: $a b a b, b a b, a b, b$
- each substring is implicitly represented by at least one suffix
- at most $O\left(n^{2}\right)$ substrings but only On suffixes!

towards suffix trees: implicit representation of substrings

Consider the string $s=a b a b$

- substrings are prefixes of suffixes: $a b a b, b a b, a b, b$
- each substring is implicitly represented by at least one suffix
- at most $O\left(n^{2}\right)$ substrings but only On suffixes!

towards suffix trees: implicit representation of substrings

Consider the string $S=a b a b$
we observe substrings:
substrings are prefixes, of sufffixés:

- each substring is implicitly represented by at least one suffix
- at most $O\left(n^{2}\right)$ substrings but only n suffixes!

towards suffix trees: implicit representation of substrings

Consider the string $S=a b a b$
we observe substrings:
a $a b$ aba $a b a b b$ ba $b a b$
substrings are prefixes of suffixes:

$$
a b a b, b a b, a b, b
$$

- each substring is implicitly represented by at least one suffix
- at most $O\left(n^{2}\right)$ substrings but only n suffixes!

towards suffix trees: implicit representation of substrings

Consider the string $S=a b a b$

- we observe substrings $a, a b, a b a, a b a b, b, b a$ and $b a b$
- substrings are prefixes of suffixes: $a b a b, b a b, a b, b$
- each substring is implicitly represented by at least one suffix
- at most $O\left(n^{2}\right)$ substrings but only n suffixes!

We append a unique character (sentinel) \$ to the end of s :

$$
S \$=a b a b \$
$$

Reason?

towards suffix trees: common prefixes

Given all suffixes $a b a b \$, b a b \$, a b \$, b \$, \$$ we observe

- $a b$ is longest common prefix for $a b a b \$$ and $a b \$$
- b is longest common prefix for $b a b \$$ and $b \$$
- \$ is longest prefix of \$

This gives us three partial trees:

a suffix tree

Combining the three partial trees leads to a complete suffix tree:

More on suffix tree construction later ...

formalities: suffix tree

Definition (suffix tree)

A suffix tree $S T(S \$)$ for a sequence $S \in \mathcal{A}^{+}$
(1) edges labeled by non-empty strings over \mathcal{A}
(2) for every node only one edge begins with same $a \in \mathcal{A}$
(3) compact, ie. has no internal nodes with less than two successors (in contrast to suffix trie)
(1) represents all substrings of S

a suffix tree is compact, a suffix trie is not

searching in a suffix tree

Searching a query sequence q in a suffix tree is easy. At internal nodes we look for a branch that starts with next character in q, on edges we simply continue to match the labels.
Lets search the query $q=a b$.

- the search starts with the first character of $q, q[0]=a$

searching in a suffix tree

Searching a query sequence q in a suffix tree is easy. At internal nodes we look for a branch that starts with next character in q, on edges we simply continue to match the labels.
Lets search the query $q=a b$.

- the search starts with the first character of $q, q[0]=a$
- and continues with the next character $q[1]=b$

searching in a suffix tree

Searching a query sequence q in a suffix tree is easy. At internal nodes we look for a branch that starts with next character in q, on edges we simply continue to match the labels.
Lets search the query $q=a b$.

- the search starts with the first character of $q, q[0]=a$
- and continues with the next character $q[1]=b$
- we immediately see: q occurs twice in $S \$$ at positions 0 and 2 .

complexity considerations

The suffix tree $S T(S)$ for the sequence $S \$$ with $|S|=n$

- hast at most $n-1$ internal nodes and n leaves $\Rightarrow O_{\text {space }}(n)$

Due to their compactness suffix trees require much less space in practice compared to suffix tries.

- for a query of length m, searches in the suffix tree take at most m character comparisons $\Rightarrow O_{\text {search }}(m)$

naive construction: top-down

In order to devise an algorithm to construct suffix trees, we will make use of the following observations:

- a node α represents all suffixes of $S \$$ that start with the same prefix u
- only one outgoing edge from α begins with same $a \in \mathcal{A}$
- we can restrict our evaluation to at most $|\mathcal{A}|$ subsets of suffixes with uav, where $a \in \mathcal{A}$ and $v \in \mathcal{A}^{*}$

naive construction: simplifications

We will now devise the algorithm topdown. For reasons of simplicity we assume

- To construct the suffix tree we call topdown $(U, 0)$, where U is a set of pairs that initially(!) holds all suffixes and their positions in $\mathrm{S} \$$, ie.
$U=\{(s, i) \mid S \$[i . . n-1]=s, 0 \leq i \leq n-1\}$
- let getlcp(U) be a function evaluates the longest common prefix for all strings s in $(s, i) \in U$
- let insertEdge $(\alpha, \boldsymbol{u}, \beta$) be a function that inserts an edge with label u between the nodes α and β.
- let insertLeaf (α, u, i) be a function that attaches a leaf i with edge label u to α.

naive construction: pseudo-code

algorithm: topdown
Require: set of pairs U, length of Icp ℓ
$\forall a \in \mathcal{A}: P_{a}=\emptyset$, node α
for all $(s, i) \in U$ do
$a:=s[\ell]$
$P_{a}:=P_{a} \cup(s[\ell+1 . . n-1], i)$
end for
for all $a \in \mathcal{A}$ do
if $\left|P_{a}\right|>1$ then
$v:=\operatorname{getlcp}\left(P_{a}\right)$
$\beta:=\operatorname{topdown}\left(P_{a},|v|\right)$ insertEdge $(\alpha, a v, \beta)$
else if $\left|P_{a}\right|=1$ then
$(s, i):=P_{a}$
attachLeaf $(\alpha, a s, i)$
end if
end for
return α

naive construction: example

For $s=a b a b \$: U=\{(a b a b \$, 0),(b a b \$, 1),(a b \$, 2),(b \$, 3),(\$, 4)\}$ - $P_{a}=\{(b a b \$, 0),(b \$, 2)\}$, getlcp $\left(P_{a}\right)=1$

naive construction: example

For $s=a b a b \$: U=\{(a b a b \$, 0),(b a b \$, 1),(a b \$, 2),(b \$, 3),(\$, 4)\}$

- $P_{a}=\{(b a b \$, 0),(b \$, 2)\}, \operatorname{getlcp}\left(P_{a}\right)=1$
- $P_{a}=\{(b \$, 0)\} \longrightarrow \operatorname{addLeaf}\left(\alpha_{a}, a b \$, 0\right)$

naive construction: example

For $s=a b a b \$: U=\{(a b a b \$, 0),(b a b \$, 1),(a b \$, 2),(b \$, 3),(\$, 4)\}$

- $P_{a}=\{(b a b \$, 0),(b \$, 2)\}$, getlcp $\left(P_{a}\right)=1$
- $P_{a}=\{(b \$, 0)\} \longrightarrow \operatorname{addLeaf}\left(\alpha_{a}, a b \$, 0\right)$
- $P_{\$}=\{(\epsilon, 2)\} \longrightarrow \operatorname{addLeaf}\left(\alpha_{a}, \$, 2\right)$

naive construction: example

For $s=a b a b \$: U=\{(a b a b \$, 0),(b a b \$, 1),(a b \$, 2),(b \$, 3),(\$, 4)\}$

- $P_{a}=\{(b a b \$, 0),(b \$, 2)\}$, getlcp $\left(P_{a}\right)=1$
- $P_{a}=\{(b \$, 0)\} \longrightarrow \operatorname{addLeaf}\left(\alpha_{a}, a b \$, 0\right)$
- $P_{\$}=\{(\epsilon, 2)\} \quad \longrightarrow \operatorname{addLeaf}\left(\alpha_{a}, \$, 2\right)$
- \longrightarrow insertEdge $\left(\alpha, a b, \alpha_{a}\right)$

Can you continue this example?

naive construction: complexity

The naive construction does not perform very well

- complexity of naive suffix tree construction is $O\left(n^{2}\right)$. Proof?

We can do better:

- Ukkonen has devised an online construction algorithm that runs in $\mathrm{O}(\mathrm{n})$.
- McCreight's $O(n)$-algorithm also runs slightly faster in practice.

McCreight's algorithm

- The idea: successively merge $S T(S \$[i . . n])$ with $S T(S \$[i+1 . . n]), i \in[0, n]$
- exploits the properties of longest common prefixes

Definition (head)

The head(i) of some suffix $S \$[i . . n], 0 \leq i \leq n-1$ is the longest common prefix of with $S \$[j . . n]$, where $j<i$.

Definition (tail)

The tail(i) is simply the rest: $S \$[i . . n]=$ head $(i) \operatorname{tail}(i)$

heads up: McCreight's trick

To appreciate the trick we need to understand the following observation:
(1) Once the suffix tree for $S \$[0 . . n] . . S \$[i . . n]$ is build, we need to update only those parts of ST that are "affected" by introducing the suffix $S \$[i+1 . . n]$
(2) Only parts beyond the head, ie. within the tail, may be "affected".

heads up: McCreight's trick

Beweis.

Let $\mathrm{ST}(\mathrm{S})$ be as suffix tree of a string S . Assume the string av has a prefix implicitly represented in $S T(S)$. Hence, there is a search-path from the root to some edge or node (leaf?)
\Rightarrow the search-path is of length $\max _{j \leq|S|} \mid c p(a v, S[j . . n])=\ell$
$\Rightarrow \operatorname{Icp}(v, S[j . . n])=k \geq \ell-1$
\Rightarrow substring $v[0 \ldots \ell-1]$ is also implicitly represented by $\mathrm{ST}(\mathrm{S})$
\Rightarrow only suffix tree modifications below internal nodes or edge labels representing $v[\ell-1 . . n]$ are necessary

Hence, finding an inexpensive way to locate the head yields an inexpensive algorithm. Let's pretend we've found it:
magic(head(i)) delivers $p \in S T$ with p representing the substring $S \$[i+1 . . i+\ell-1]$.

linear construction: algorithm M

```
Require: inital suffix tree for \(\$ \$[0 . . n-1]\)
    for \(i\) in 0 to \(n-2\) do
    if head \((i)=\epsilon\) then
        head \((i+1):=\operatorname{scan}(\epsilon, S \$[i+1 . . n])\)
        if head \((i+1) \in E\) then
            addNode(head \((i+1)\) )
        end if
        addLeaf(head \((i+1)\), tail \((i+1), i+1)\)
    else
        \(p:=\operatorname{magic}(\) head \((i))\)
        if \(p \in E\) then
            head \((i+1)=p\)
        else if \(p \in V\) then
            head \((i+1)=\operatorname{scan}(p, \operatorname{tail}(i))\)
        end if
        if \(\operatorname{head}(i+1) \in E\) then
            addNode(head \((i+1))\)
        end if
        addLeaf(head \((i+1)\), tail \((i+1), i+1)\)
    end if
end for
```


linear construction: algorithm M

```
Require: inital suffix tree for \(\mathrm{S} \$[0 . . \mathrm{n}-1]\)
    for \(i\) in 0 to \(n-2\) do
        if head \((i)=\epsilon\) then
        head \((i+1):=\operatorname{scan}(\epsilon, S \$[i+1 . . n])\)
        if head \((i+1) \in E\) then
            addNode(head( \(i+1\) ))
        end if
        addLeaf(head \((i+1)\), tail \((i+1), i+1)\)
    else
        \(p:=\operatorname{magic}(\operatorname{head}(i))\)
        if \(p \in E\) then
            head \((i+1)=p\)
        else if \(p \in V\) then
            head \((i+1)=\operatorname{scan}(\mathrm{p}, \operatorname{tail}(i))\)
        end if
        if \(\operatorname{head}(i+1) \in E\) then
            addNode(head( \(i+1\) ))
        end if
        addLeaf(head \((i+1)\), tail \((i+1), i+1)\)
    end if
end for
```

i	0
S[i+1..n]	baba\$
head(i)	ϵ
tail(i)	bbaba\$

linear construction: algorithm M

```
Require: inital suffix tree for \(\$ \$[0 . . n-1]\)
    for \(i\) in 0 to \(n-2\) do
    if head \((i)=\epsilon\) then
        head \((i+1):=\operatorname{scan}(\epsilon, S \$[i+1 . . n])\)
        if head \((i+1) \in E\) then
            addNode(head( \(i+1\) ))
        end if
        addLeaf(head \((i+1)\), tail \((i+1), i+1)\)
    else
        \(p:=\operatorname{magic}(\) head \((i))\)
        if \(p \in E\) then
            head \((i+1)=p\)
        else if \(p \in V\) then
            head \((i+1)=\operatorname{scan}(p, \operatorname{tail}(i))\)
        end if
        if \(\operatorname{head}(i+1) \in E\) then
            addNode(head \((i+1)\) )
        end if
        addLeaf(head \((i+1)\), tail \((i+1), i+1)\)
    end if
end for
```


linear construction: algorithm M

```
Require: inital suffix tree for \(\$ \$[0 . . n-1]\)
    for \(i\) in 0 to \(n-2\) do
        if head \((i)=\epsilon\) then
        head \((i+1):=\operatorname{scan}(\epsilon, S \$[i+1 . . n])\)
        if head \((i+1) \in E\) then
            addNode(head \((i+1)\) )
        end if
        addLeaf(head \((i+1)\), tail \((i+1), i+1)\)
    else
        \(p:=\operatorname{magic}(\) head \((i))\)
        if \(p \in E\) then
            head \((i+1)=p\)
        else if \(p \in V\) then
            head \((i+1)=\operatorname{scan}(\mathrm{p}, \operatorname{tail}(i))\)
\begin{tabular}{lr}
\hline i & 0 \\
S[i+1..n] & baba\$ \\
head(i) & \(\epsilon\) \\
tail(i) & bbaba\$ \\
\hline
\end{tabular}
```



```
        end if
        if \(\operatorname{head}(i+1) \in E\) then
            addNode(head \((i+1)\) )
        end if
        addLeaf(head \((i+1)\), tail( \(i+1), i+1)\)
    end if
end for
```


linear construction: algorithm M

Require: inital suffix tree for $\mathrm{S} \$[0 . . \mathrm{n}-1]$
for i in 0 to $n-2$ do
if head $(i)=\epsilon$ then
head $(i+1):=\operatorname{scan}(\epsilon, S \$[i+1 . . n])$
if head $(i+1) \in E$ then
addNode(head($i+1$))
end if
addLeaf(head $(i+1)$, tail $(i+1), i+1)$ else
$p:=\operatorname{magic}(\operatorname{head}(i))$
if $p \in E$ then
head $(i+1)=p$
else if $p \in V$ then
head $(i+1)=\operatorname{scan}(\mathrm{p}, \operatorname{tail}(i))$

i	0
$\mathrm{~S}[\mathrm{i}+1 . . \mathrm{n}]$	baba\$
head(i)	ϵ
tail(i)	bbaba\$

end if
if $\operatorname{head}(i+1) \in E$ then
addNode(head $(i+1)$)
end if
addLeaf(head $(i+1)$, tail $(i+1), i+1)$
end if
end for

linear construction: algorithm M

Require: inital suffix tree for $\mathrm{S} \$[0 . . \mathrm{n}-1]$
for i in 0 to $n-2$ do
if head $(i)=\epsilon$ then
head $(i+1):=\operatorname{scan}(\epsilon, S \$[i+1 . . n])$
if head $(i+1) \in E$ then
addNode(head($i+1$))
end if
addLeaf(head $(i+1)$, tail $(i+1), i+1)$ else
$p:=\operatorname{magic}($ head $(i)\}$
if $p \in E$ then
head $(i+1)=p$
else if $p \in V$ then
head $(i+1)=\operatorname{scan}(\mathrm{p}, \operatorname{tail}(i))$

end if
if head $(i+1) \in E$ then
addNode(head $(i+1)$)
end if
addLeaf(head $(i+1)$, tail $(i+1), i+1)$
end if
end for

linear construction: algorithm M

Require: inital suffix tree for $\mathrm{S} \$[0 . . \mathrm{n}-1]$
for i in 0 to $n-2$ do
if head $(i)=\epsilon$ then
head $(i+1):=\operatorname{scan}(\epsilon, S \$[i+1 . . n])$
if head $(i+1) \in E$ then
addNode(head($i+1$))
end if
addLeaf(head($i+1$), tail $(i+1), i+1)$ else
$p:=\operatorname{magic}($ head $(i))$
if $p \in E$ then
head $(i+1)=p$
else if $p \in V$ then
$\operatorname{head}(i+1)=\operatorname{scan}(p, \operatorname{tail}(i))$

i	1
$S[i+1 . . n]$	$a b a \$$
head(i)	b
tail(i)	aba\$

end if
if head $(i+1) \in E$ then
addNode(head($i+1$)
end if
addLeaf(head $(i+1)$, tail $(i+1), i+1)$
end if
end for

linear construction: algorithm M

Require: inital suffix tree for $\mathrm{S} \$[0 . . \mathrm{n}-1]$
for i in 0 to $n-2$ do
if head $(i)=\epsilon$ then
head $(i+1):=\operatorname{scan}(\epsilon, S \$[i+1 . . n])$
if head $(i+1) \in E$ then
addNode(head($i+1$))
end if
addLeaf(head $(i+1)$, tail $(i+1), i+1)$ else
$p:=\operatorname{magic}(\operatorname{head}(i))$
if $p \in E$ then
head $(i+1)=p$ else if $p \in V$ then
head $(i+1)=\operatorname{scan}(p, \operatorname{tail}(i))$

i	1
S[i+1..n]	aba\$
head(i)	b
tail(i)	aba\$

end if
if $\operatorname{head}(i+1) \in E$ then
addNode(head $(i+1)$)
end if
addLeaf(head $(i+1)$, tail $(i+1), i+1)$
end if
end for

linear construction: algorithm M

Require: inital suffix tree for $\mathrm{S} \$[0 . . \mathrm{n}-1]$
for i in 0 to $n-2$ do
if head $(i)=\epsilon$ then

i	2
S[i+1..n]	ba\$
head(i)	ϵ
tail(i)	aba\$

end if
addLeaf(head $(i+1)$, tail $(i+1), i+1)$ else
$p:=\operatorname{magic}(\operatorname{head}(i))$
if $p \in E$ then
head $(i+1)=p$
else if $p \in V$ then
head $(i+1)=\operatorname{scan}(\mathrm{p}, \operatorname{tail}(i))$
head $(i+1):=\operatorname{scan}(\epsilon, S \$[i+1 . . n])$
if head $(i+1) \in E$ then
addNode(head($i+1$))
if
if $\operatorname{head}(i+1) \in E$ then
addNode(head $(i+1)$)
end if
addLeaf(head $(i+1)$, tail $(i+1), i+1)$
end if
end for

linear construction: algorithm M

Require: inital suffix tree for $\mathrm{S} \$[0 . . \mathrm{n}-1]$
for i in 0 to $n-2$ do
if head $(i)=\epsilon$ then
head $(i+1):=\operatorname{scan}(\epsilon, S \$[i+1 . . n])$
if head $(i+1) \in E$ then
addNode(head($i+1$))
end if
addLeaf(head $(i+1)$, tail $(i+1), i+1$ 人 else
$p:=\operatorname{magic}(\operatorname{head}(i))$
if $p \in E$ then
head $(i+1)=p$
else if $p \in V$ then
head $(i+1)=\operatorname{scan}(\mathrm{p}, \operatorname{tail}(i))$
end if
if $\operatorname{head}(i+1) \in E$ then

i	2
$\mathrm{~S}[\mathrm{i}+1 . . \mathrm{n}]$	$\mathrm{ba} \$$
head(i)	ϵ
$\operatorname{tail}(\mathrm{i})$	aba\$

addNode(head($i+1$))
end if
addLeaf(head $(i+1)$, tail $(i+1), i+1)$
end if
end for

linear construction: algorithm M

Require: inital suffix tree for $\mathrm{S} \$[0 . . \mathrm{n}-1]$
for i in 0 to $n-2$ do
if head $(i)=\epsilon$ then
head $(i+1):=\operatorname{scan}(\epsilon, S \$[i+1 . . n])$
if head $(i+1) \in E$ then
addNode(head($i+1$))
end if
addLeaf(head $(i+1)$, tail $(i+1), i+1)$ else
$p:=\operatorname{magic}(\operatorname{head}(i))$
if $p \in E$ then
head $(i+1)=p$
else if $p \in V$ then
head $(i+1)=\operatorname{scan}(\mathrm{p}, \operatorname{tail}(i))$
end if
if head $(i+1) \in E$ then

i	2
S[i+1..n]	ba\$
head(i)	ϵ
tail(i)	aba\$

addNode(head($i+1$))
end if
addLeaf(head $(i+1)$, tail $(i+1), i+1)$
end if
end for

linear construction: algorithm M

Require: inital suffix tree for $\mathrm{S} \$[0 . . \mathrm{n}-1]$
for i in 0 to $n-2$ do
if head $(i)=\epsilon$ then
head $(i+1):=\operatorname{scan}(\epsilon, S \$[i+1 . . n])$
if head $(i+1) \in E$ then
addNode(head($i+1$))
end if
addLeaf(head $(i+1)$, tail $(i+1), i+1)$
else

addNode(head $(i+1)$)
end if
addLeaf(head $(i+1)$, tail $(i+1), i+1)$
end if
end for

linear construction: algorithm M

Require: inital suffix tree for $\mathrm{S} \$[0 . . \mathrm{n}-1]$
for i in 0 to $n-2$ do
if head $(i)=\epsilon$ then head $(i+1):=\operatorname{scan}(\epsilon, S \$[i+1 . . n])$ if head $(i+1) \in E$ then addNode(head($i+1$)) end if addLeaf(head $(i+1)$, tail $(i+1), i+1)$ else
$p:=\operatorname{magic}(\operatorname{head}(i))$ if $p \in E$ then
head $(i+1)=p$ else if $p \in V$ then
head $(i+1)=\operatorname{scan}(\mathrm{p}, \operatorname{tail}(i))$ end if
if head $(i+1) \in E$ then
addNode(head $(i+1))$
end if
addLeaf(head $(i+1)$, tail $(i+1), i+1)$
end if
end for

linear construction: algorithm M

Require: inital suffix tree for $\mathrm{S} \$[0 . . \mathrm{n}-1]$
for i in 0 to $n-2$ do
if head $(i)=\epsilon$ then
head $(i+1):=\operatorname{scan}(\epsilon, S \$[i+1 . . n])$
if head $(i+1) \in E$ then
addNode(head($i+1$))
end if
addLeaf(head $(i+1)$, tail $(i+1), i+1)$
else
$p:=\operatorname{magic}($ head $(i))$
if $p \in E$ then
head $(i+1)=p$
else if $p \in V$ then
head $(i+1)=\operatorname{scan}(p, \operatorname{tail}(i))$
end if
if head $(i+1) \in E$ then
addNode(head($i+1$))
end if
addLeaf(head $(i+1)$, tail $(i+1), i+1)$
end if
end for

linear construction: algorithm M

Require: inital suffix tree for $\mathrm{S} \$[0 . . \mathrm{n}-1$]
for i in 0 to $n-2$ do
if head $(i)=\epsilon$ then head $(i+1):=\operatorname{scan}(\epsilon, S \$[i+1 . . n])$ if head $(i+1) \in E$ then addNode(head($i+1$))
end if addLeaf(head $(i+1)$, tail $(i+1), i+1)$ else
$p:=\operatorname{magic}(\operatorname{head}(i))$
if $p \in E$ then
head $(i+1)=p$
else if $p \in V$ then
head $(i+1)=\operatorname{scan}(p, \operatorname{tail}(i))$
end if
if $\operatorname{head}(i+1) \in E$ then
addNode(head $(i+1)$)
end if
addLeaf(head $(i+1)$, tail $(i+1), i+1)$
end if
end for

i	4
$\mathrm{~S}[\mathrm{i}+1 . . \mathrm{n}]$	$\$$
head(i)	a
tail(i)	$\$$

What will happen now?

magic

For some head $(\mathrm{i})=S \$[i . . i+\ell]$, the function magic(head(i)) delivers a position $p \in S T(S)$ with p representing the substring $S \$[i+1 . . i+\ell-1]$. It is realized using suffix links:

- suffix links are only defined on nodes
- to use suffix link, go back to parent node
- while going back remember all edge labels
- jump to another node via suffix link
- rematch the edge labels
- done. we reached the location for $S \$[i+1 . . i+\ell-1]$.

Suffix links can be updated during the construction of the suffix tree with algorithm M.

Suffix trees: a stringology toolbox

(1) string search
(2) longest common substrings (two strings)
(3) longest repeated substrings (one string)
(3) for each suffix of a pattern, get length of the longest match
(3) shortest unique substrings
(0) ...

