Discovering structural motifs using a structural alphabet

Application to magnesium-binding sites

Sebastian Bartschat

21. Juli 2007

- Einführung
- 2 Fragestellungen

Fragestellungen

- 3 Generierung des Struktur-Alphabets
 - unsupervised cluster analyser
 - Strukturvorhersage mittels Bayes-Theorem
 - Ergebnisse
- 4 Anwendung auf Mg²⁺-Bindungsstellen
 - Vorbereitungen
 - Analyse

Fragestellungen

Magnesium ist einer der vielseitigsten metallischen Co-Faktoren:

- an Reaktionen mit Phosphatgruppenübertragung beteiligt (ATP-Magnesium liegt vor)
- nötig für die Nukleinsäurebiosynthese, aber auch für die Stabilität
- Stabilisierung von Proteinstrukturen
- besitzt calciumantagonistische Wirkung

Bindungseigenschaften

- Bindung an Seitenketten von Asp und Glu bzw. Asn und Gln
- bis jetzt nur Studien mit Proteinen mit hoher Sequenzähnlichkeit
 2 Sequenzmotive :
 - NADFDGD

2 YXDD / LXDD

RNA Pol. und DNA Pol. I

Reverse Transkriptase und Telomerase

Fragestellungen

- Besitzen Mg²⁺-Bindungsstellen strukturelle Neigungen?
- Existieren strukturelle Motive, auch wenn keine Sequenzähnlichkeit vorhanden ist?
- Sönnen strukturelle Motive bestimmten Proteinfunktionen zugeordnet werden?
- Welche Spezifität weisen die gefundenen Motive auf?

- Einführung
- 2 Fragestellungen
- 3 Generierung des Struktur-Alphabets
 - unsupervised cluster analyser
 - Strukturvorhersage mittels Bayes-Theorem
 - Ergebnisse
- 4 Anwendung auf Mg²⁺-Bindungsstellen
 - Vorbereitungen
 - Analyse

unsupervised cluster analyser

Einführung

 Ziel: Generierung eines Sets von Strukturblöcken, um die Struktur eines Proteins anhand der Sequenz bestmöglich zu approximieren

- Ziel: Generierung eines Sets von Strukturblöcken, um die Struktur eines Proteins anhand der Sequenz bestmöglich zu approximieren
- Vorüberlegung: Zerlegung des Proteins in überlappende Blöcke von M = 5 AS (ProteinBlock - PB)

- Ziel: Generierung eines Sets von Strukturblöcken, um die Struktur eines Proteins anhand der Sequenz bestmöglich zu approximieren
- Vorüberlegung : Zerlegung des Proteins in überlappende Blöcke von M = 5 AS (ProteinBlock - PB)
- ProteinBlock : Beschreibung durch Vektor aus Diederwinkeln

$$V(\psi_{n-2}, \phi_{n-1}, \psi_{n-1}, \phi_n, \psi_n, \phi_{n+1}, \psi_{n+1}, \phi_{n+2})$$

um das zentrale $C\alpha_n$ des ProteinBlocks

- self-organizing maps (SOM) mit 2 Lernphasen
- Ähnlichkeitsmessung zwischen 2 Vektoren mittels RMSDA (root mean square deviation on angular values)

$$\mathsf{RMSDA}(V_1, V_2) = \sqrt{\frac{\sum\limits_{i=1}^{i=M-1} [\psi_i(V_1) - \psi_i(V_2)]^2 + [\phi_{i+1}(V_1) - \phi_{i+1}(V_2)]^2}{2(M-1)}}$$

• ProteinBlöcke PB_k der Karte sind zu Beginn durch einen Vektor W(k) definiert

first training

- Einlesen von C Proteinen als konsekutive Signale der einzelnen PBs
- Bestimmung des ProteinBlocks W_k mit dem kleinsten Abstand zu dem induzierten Vektor V(m) (mittels RMSDA)
- Neugewichtung des PB_k :

$$W(k) \leftarrow W(k) + (V(m) - W(k)) * \nu(c)$$

wobei $\nu(c)$ eine Lernrate darstellt, die mit der Zeit abnimmt

second training

- Ermittlung der Transitionsmatrix der PBs
- erneutes Einlesen von C Proteinen als Signal konsekutiver
 Vektoren
- Bestimmung von n ähnlichen Blöcken zu einem induzierten Vektor V(m) (ergibt Menge von Vektoren W_k)
- Neugewichtung desjenigen W(k) mit der höchsten Übergangswahrscheinlichkeit von W(j) (W(j) mit V(m-1) assoziiert)

shrinking process

Ziel: Reduzierung der Neurone auf eine optimale Anzahl

- 1 untersuche alle PB; und PB; der Karte K auf Ähnlichkeit $(i, j \in \{1...|K|\})$
 - → strukturelle Ähnlichkeit
 - → Translationsähnlichkeit.
- 4 falls PB; und PB; ähnlich: lösche den PB der seltener ist und gehe zu Schritt 1 sonst: ENDE

- Generierung des Struktur-Alphabets
 - unsupervised cluster analyser
 - Strukturvorhersage mittels Bayes-Theorem
 - Ergebnisse
- - Vorbereitungen
 - Analyse

Anwendung auf Mg²⁺-Bindungsstellen

Ziel: Genaue Approximation der 3D-Struktur aus Proteinsequenz

Vorüberlegungen

- jedem ProteinBlock ist eine Menge von Sequenzen zugeordnet
- Erstellen eines Sequenzfenster der Größe $[-\omega, +\omega]$ auf der Proteinsequenz um das $C\alpha$ des jeweiligen PB

Ziel: Genaue Approximation der 3D-Struktur aus Proteinsequenz

Vorüberlegungen

- jedem ProteinBlock ist eine Menge von Sequenzen zugeordnet
- Erstellen eines Sequenzfenster der Größe $[-\omega, +\omega]$ auf der Proteinsequenz um das $C\alpha$ des jeweiligen PB
- ullet Vorkommensmatrix für AS an Pos. j im ProteinBlock k : $n_{i,j}^k$
- Berechnung von $P(a_i \text{ in } j | PB_k) = \frac{n_{i,j}^k}{N_k}$
 - k ... Nummer des ProteinBlocks
 - i ... Nummer der Aminosäure
 - j ... Position im Sequenzfenster

Beschreibung der Daten:

Kullback-Leibler-Divergenz

$$K_k(p_j,q) = \sum_i p_{ji} * \ln \left(\frac{p_{ji}}{q_i} \right)$$

Beschreibung der Daten:

Kullback-Leibler-Divergenz

$$K_k(p_j,q) = \sum_i p_{ji} * \ln \left(\frac{p_{ji}}{q_i} \right)$$

Unterschied zwischen der AS-Verteilung an der Stelle j im Block k zur allgemeinen Verteilung

dient der Suche nach Positionen mit großer Spezifität

7-Score

$$z = \frac{\left(n_{ij}^k - n_{ib}\right)}{\sqrt{n_{ib}}}$$

 $n_{ib} = N_k * f_i$ beschreibt den Erwartungswert der i-ten AS

dient der Suche nach AS mit großer Spezifität für eine bestimmte Pos. in einem bestimmten ProteinBlock

• gesucht ist ProteinBlock k so dass $P(PB_k | X_s)$ maximal ist

$$\bullet \ \mathsf{P}(\mathsf{PB}_k \mid X_s) = \frac{\mathsf{P}(\mathsf{X}_s \mid \mathsf{PB}_k) * \mathsf{P}(\mathsf{PB}_k)}{\mathsf{P}(\mathsf{X}_s)}$$

$$P(X_s) = \prod_{j=-\omega}^{j=+\omega} P(a_i)$$

Wahrscheinlichkeit die Sequenz X_s zu beobachten; ohne gegebene Strukturinformationen

$$P(X_s) = \prod_{j=-\omega}^{j=+\omega} P(a_i)$$

Wahrscheinlichkeit die Sequenz X_s zu beobachten; ohne gegebene Strukturinformationen

$$P(X_s \mid PB_k) = \prod_{i = -\omega}^{j = +\omega} P(a_j \mid PB_k)$$

Wahrscheinlichkeit die Sequenz $X_s(a_{-\omega},\ldots,a_{+\omega})$ zu beobachten, wenn ein bestimmter ProteinBlock k gegeben ist

Berechnung des optimalen ProteinBlockes PB* für eine gegebene Sequenz X_s mittels des Verhältnisse R_k :

$$R_k = \frac{P(X_s \mid PB_k)}{P(X_s)} = \frac{P(PB_k \mid X_s)}{P(PB_k)}$$

Berechnung des optimalen ProteinBlockes PB* für eine gegebene Sequenz X_s mittels des Verhältnisse R_k :

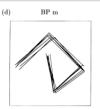
$$R_k = \frac{P(X_s \mid PB_k)}{P(X_s)} = \frac{P(PB_k \mid X_s)}{P(PB_k)}$$

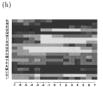
- PB* = k mit $ln(R_k)$ maximal
- 2 PB* ist in der Menge der r-besten Blöcke k

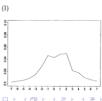
- Cinführung
- 2 Fragestellunger
- 3 Generierung des Struktur-Alphabets
 - unsupervised cluster analyser
 - Strukturvorhersage mittels Bayes-Theorem
 - Ergebnisse
- Anwendung auf Mg²⁺-Bindungsstellen
 - Vorbereitungen
 - Analyse

 das Training resultierte in einem Alphabet aus 16 Protein-Blöcken

				Transitions (%)			Str. II (%)			
PB label	Frequency (%)	RMSD (Å)	anr	1st	2nd	3rd	α	Coil	β	Coarse char.
a	3.93	0.52	1.01	54.8(c)	16.5(f)	8.0(b)	0.1	76.7	23.3	N-cap β
b	4.58	0.51	1.00	44.4(d)	17.9(c)	13.7(f)	0.2	86.7	13.1	N-cap β
c	8.63	0.51	1.28	62.2(d)	24.4(f)	5.6(e)	0.1	58.2	41.7	N-cap β
d	18.84	0.48	2.74	51.9(f)	25.6(c)	19.2(e)	0.0	28.4	71.6	β
e	2.31	0.54	1.11	80.4(h)	9.1(d)		0.0	49.8	50.2	С-сар В
f	6.72	0.50	1.00	60.7(k)	36.3(b)		0.0	72.5	27.5	С-сар В
g	1.28	0.74	1.05	37.5(h)	28.0(c)	19.1(o)	6.9	83.8	9.3	mainly coil
h	2.35	0.62	1.04	62.4(i)	18.1(j)	10.2(k)	0.0	81.5	18.5	mainly coil
i	1.62	0.56	1.01	87.7(a)	-		0.0	94.5	5.5	mainly coil
j	0.96	1.03	1.01	17.0(a)	16.6(b)	16.1(l)	3.7	87.9	8.4	mainly coil
k	5.46	0.59	1.00	76.2(l)	13.6(b)		35.1	64.2	0.7	N-cap α
l	5.35	0.63	1.01	68.5(m)	9.2(p)	7.0(c)	44.4	54.9	0.7	N-cap α
m	30.04	0.43	6.74	33.8(n)	18.5(p)	9.7(b)	86.7	13.2	0.1	α
n	1.93	0.61	1.03	90.9(0)	-		68.4	31.3	0.3	C-cap α
0	2.60	0.60	1.02	74.7(p)	8.3(m)		43.1	56.8	0.1	C-cap α
p	3.41	0.46	1.00	58.1(a)	22.7(c)	11.1(m)	11.2	87.5	1.3	C-cap α to N-cap β

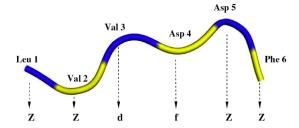

(0.43 Å)


Ergebnisse


PBm weist kleinen rmsd-wert auf

 überrepräsentiert: aliphatische AS unterrepräsentiert: α-Helixbrecher

 KLd zeigt breites Spektrum von spezifischen Stellen


Ergebnisse der Vorhersagestrategie am Beispiel des Proteins 2aak

U		0	0		•		
	Sequence					Predicted PBs	
Left	c. window	Right	True PB	Neq	1st	2nd	3rd
DMSTP	ARKLM	RDFKR	l	2.74	m(11.21)	<u>[</u> (0.63)	d(0.36)
MSTPA	RKLMR	DFKRL	m	2.43	m(17.51)	d(0.74)	f(0.43)
STPAR	KLMRD	FKRLQ	m	2.06	$\underline{m}(33.68)$	f(0.38)	d(0.18)
TPARK	LMRDF	KRLQQ	m	2.63	$\underline{m}(11.05)$	l(0.51)	k(0.36)
PARKL	MRDFK	RLQQD	m	2.48	$\underline{m}(22.13)$	f(1.25)	b(0.40)
ARKLM	RDFKR	LQQDP	m	3.78	$\underline{m}(7.77)$	k(1.90)	c(0.54)
RKLMR	DFKRL	QQDPP	m	2.92	$\underline{m}(12.48)$	b(0.94)	c(0.34)
KLMRD	FKRLQ	QDPPA	m	3.49	$\underline{m}(12.98)$	n(2.60)	p(0.73)
LMRDF	KRLQQ	DPPAG	m	6.32	$\underline{m}(3.51)$	n(0.55)	d(0.38)
MRDFK	RLQQD	PPAGI	m	8.61	p(2.02)	b(1.08)	$\underline{m}(1.02)$
RDFKR	LQQDP	PAGIA	m	4.82	p(3.03)	d(1.12)	c(0.44)
DFKRL	QQDPP	AGIAG	c	2.55	c(4.43)	d(0.19)	p(0.12)
FKRLQ	QDPPA	GIAGA	c	3.10	f(13.43)	<u>c</u> (2.87)	k(0.23)
KRLQQ	DPPAG	IAGAG	e	5.45	b(7.14)	e(1.94)	g(1.68)
RLQQD	PPAGI	AGAGI	h	5.34	b(12.39)	h(6.72)	l(3.16)
LQQDP	PAGIA	GAGIS	i	4.97	i(11.29)	p(5.29)	c(1.40)
QQDPP	AGIAG	AGISG	a	4.75	g(15.58)	<u>a</u> (6.16)	e(3.24)
QDPPA	GIAGA	GISGA	c	6.75	b(7.15)	h(4.01)	$\underline{c}(2.32)$

- Finführung
- 2 Fragestellunger
- Generierung des Struktur-Alphabets
 - unsupervised cluster analyser
 - Strukturvorhersage mittels Bayes-Theorem
 - Ergebnisse
- 4 Anwendung auf Mg²⁺-Bindungsstellen
 - Vorbereitungen
 - Analyse

- Erstellen des Datensatzes:
 - Sequenzähnlichkeit < 30%
 - Auflösung < 2,5 Å
 - ullet Anzahl AS, die an Bindung beteiligt sind \geq 3 AS
 - \rightarrow Datensatz enthält 77 Bindungen in 70 Proteinen

- Vorbereitungen
 - Erstellen des Datensatzes:
 - Sequenzähnlichkeit < 30%
 - Auflösung < 2,5 Å
 - Anzahl AS, die an Bindung beteiligt sind \geq 3 AS
 - → Datensatz enthält 77 Bindungen in 70 Proteinen
 - Umwandlung mittels PBE-Webinterface in Strukturalphabet

first-shell und second-shell Liganden

 1^{st} -shell : Entfernung zwischen Metallion und Donor $\leq 2.5 \text{ Å}$

 $2^{\textit{nd}}\text{-shell}$: Entfernung $\leq 3.5 \text{ Å}$

Vorbereitungen

Einführung

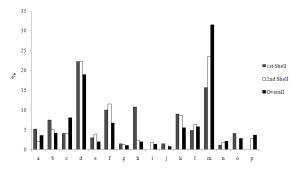
first-shell und second-shell Liganden

 1^{st} -shell : Entfernung zwischen Metallion und Donor $\leq 2.5 \text{ Å}$

 2^{nd} -shell : Entfernung $\leq 3.5 \text{ Å}$

Strukturmotive

- $k \ge 3$; k beschreibt die Anzahl der Wiederholungen
- gleiche Strukturbuchstaben
- ähnlich große Zwischenräume


- 1 Einführung
- 2 Fragestellunger
- 3 Generierung des Struktur-Alphabets
 - unsupervised cluster analyser
 - Strukturvorhersage mittels Bayes-Theorem
 - Ergebnisse
- 4 Anwendung auf Mg²⁺-Bindungsstellen
 - Vorbereitungen
 - Analyse

strukturelle Präferenzen der Mg²⁺-Bindungstsellen

- Analyse der Struktur von 1st- und 2nd shell Bindungsstellen
- Vergleich der Frequenzen der beiden Schalen mit dem allgemeinen Auftreten der Struktur

strukturelle Präferenzen der Mg²⁺-Bindungstsellen

- ullet Analyse der Struktur von 1^{st} und 2^{nd} shell Bindungsstellen
- Vergleich der Frequenzen der beiden Schalen mit dem allgemeinen Auftreten der Struktur

 ${\rm Mg^{2+}} ext{-Bindungsstellen}$ präferieren Loops statt Helizes und Faltblätter

Suche nach strukturellen Motiven

 1^{st} -shell : 4 Motive, die 21% aller Bindungsstellen repräsentieren

- \rightarrow e(24-47)h(24)k
- \rightarrow f(1)h(109-349)b
- \rightarrow f(2)h(126-158)m
- \rightarrow k(26-29)h(1)a

Suche nach strukturellen Motiven

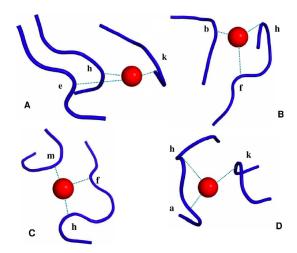
 1^{st} -shell : 4 Motive, die 21% aller Bindungsstellen repräsentieren

- \rightarrow e(24-47)h(24)k
- \rightarrow f(1)h(109-349)b
- \rightarrow f(2)h(126-158)m
- \rightarrow k(26-29)h(1)a
- gleiche Motive haben meist gleiche CATH-Nummern (hierarchische Klassifizierung von Proteindomänen)
- Möglichkeit für noch nicht klassifizierte Proteine?

Ergebnisse

Fragestellungen

Motif [®]	PDB code	Mg ²⁺ -Ligands	CATH number ^b	Functional Group ^c	EC code ^d
e(24-47)h(24)k	ISJC	D189, E214, D239	3.20.20.120	Lyase ^e , Isomerase ^f	-
	IŤKK	D191, E219, D244	3.20.20.120	Isomerasef	-
	2AKZ	D244, E292, D317	-	Lyasee	4.2.1.11
f(1)h(109-349)b	1008	D1008, D1010, D1170	3.40.50.1000	Isomerase ^f	5.4.2.6
	IU7P	D11, D13, D123	NYC	Hydrolase ^g	-
	IWPG	D351, T353, D703	3.40.50.1000	Hydrolase ^g	3.6.3.8
	2B82	D44, D46, D167	3.40.50.1000	Hydrolase ^g	3.1.3.2
	2C4N	D9, D11, D201	NYC	Hydrolases	-
f(2)h(126–158)m	IKAI	D142, D145, D294	3.30.540.10	Hydrolase ^g	3.1.3.7
	INUY	D1118, D1121, E1280	3.30.540.10+ 3.40.190.80	Hydrolases	3.1.3.11
	2BJI	E ¹⁰⁹⁰ , D ¹⁰⁹³ , D ¹²²⁰	3.30.540.10+ 3.40.190.80	Hydrolase®	3.1.3.25
k(26-29)h(1)a	IITZ	D168, N198, I200	3.40.50.970	Transferaseh	2.2.1.1
	IPOX	D ⁴⁴⁷ , N ⁴⁷⁴ , Q ⁴⁷⁶	3.40.50.970+ 3.40.50.1220	Oxidoreductase ⁱ	1.2.3.3
	IUMD	D175, N204, Y206	3.40.50.970	Oxidoreductase ⁱ	1.2.4.4
	IZPD	D440, N467, G469	3.40.50.970	Lyasee	4.1.1.1
	2C3M	D963, T991, V993	3.40.50.970	Oxidoreductase ⁱ	1.2.7.1


Wie spezifisch sind die Resultate?

- Abgleich gegen Nichtmetallproteine aus de Brevern's DB (Auswahl der Proteine nach vorab definierten Kriterien)
 - \rightarrow matches für f(1)h(109-349)b und k(26-29)h(1)a
 - \rightarrow e(24-47)h(24)k & f(2)h(126-158)m sind metallspezifisch

Wie spezifisch sind die Resultate?

- Abgleich gegen Nichtmetallproteine aus de Brevern's DB (Auswahl der Proteine nach vorab definierten Kriterien)
 - \rightarrow matches für f(1)h(109-349)b und k(26-29)h(1)a
 - \rightarrow e(24-47)h(24)k & f(2)h(126-158)m sind metallspezifisch
- Abgleich gegen calciumbindende Proteine (Anwendung des gleichen Verfahrens wie für die Mg²⁺-Bindungsstellen)
 - \rightarrow f(1)h(109-349)b und k(26-29)h(1)a wurden in 1 bzw. 2 Proteinen gefunden
 - \rightarrow e(24-47)h(24)k & f(2)h(126-158)m sind metall- und magnesiumspezifisch

4 extrahierte Bindungsmotive :

Fragestellungen

- Minko Dudev, Carmay Lim *Discovering structurel motifs using* a structural alphabet: Application to magnesium-binding sites, Bioinformatics 2007 Mar 28; 8(106)
- de Brevern AG, Etchebest C, Hazout S Bayesian Probabilistic Approach for Predicting Backbone Sturctures in Terms of Protein Blocks PROTEINS: Structures, Function and Genetics 2000