Analysis of Transcription Factor Interaction in Humans, Chimpanzees and Rhesus Macaques Graphs and Biological Networks – Practical Course

Felix Kühnl

University of Leipzig

August 2013 – organized by Stefano Berto Katja Nowick Konstantin Klemm

Inparalog-Suche Introduction

Introduction

- ▶ Human vs. Chimp: only about 1% difference in gene sequences
- but: many differences in phenotype, especially in brain and mental capabilities
- > cause: different expression levels of genes in different species
- \sim controlled by transcription factors (TFs)

Inparalog-Suche Introduction

Transcription Factors

- TFs: proteins that control expression of genes
- key to understand how the different phenotypes arise
- Questions:
 - How do TFs interact to regulate gene expression?
 - Does TF interaction differ between the species?
 - Is the TF interaction dependent on individual selection?

h	nparalog-Suche
l	— Methods

Analysis of TF Interaction

- dataset: expression level of 12,100 genes (incl. 280 TFs) for 12 individuals of each species (human, chimp and rhesus macaque)
- ▶ for any TF *i* and any gene *j* in the dataset let $a_{ij} = \rho_{ij} = cor(x_i, y_j) \in [-1, 1]$, where $x_i, y_j \in \mathbb{R}^{12}$ are the expression levels and *cor()* is Spearman's ranked correlation coefficient
- ∼ interpret $(a_{ij}) = A \in [-1, 1]^{i \times j}$ as adjacency matrix of TF-gene interaction network (possibility: set $a_{ij} < \rho^*$ to 0)
 - to mesure interaction between TFs *i*, *j* in species *s*, calculate topological overlap

$$\omega_{ij}^{s} = \frac{\sum_{u \in \text{Genes}} a_{iu} a_{ju} + a_{ij}}{\min(k_i, k_j) + 1 - |a_{ij}|} \in [-1, 1]$$

where $k_i = \sum_{j \in \text{Genes}} |a_{ij}|$ is the connectivity of TF *i*

ļ	nparalog-Suche
	- Methods

Dependence on Individual Selection

- analyse dependence of TF interaction: *leave-one-out* approach
- \curvearrowright for each individual $x \in \{1, \ldots, 12, \emptyset\}$ calculate $\omega_{ij}^{\rm sx}$ without expression data for this individual
 - ► result: 3.12=36 new + 3 old = 39 TF interaction networks Ω^{sx}
 - comparison of these: calculate distance

$$d_{\Omega^{\mathrm{sx}}\Omega^{\mathrm{sx}'\mathrm{x}'}} = \frac{1}{n^2}\sum_{ij} |\omega_{ij}^{\mathrm{sx}} - \omega_{ij}^{\mathrm{s}'\mathrm{x}'}|$$

where n is the number of TFs

Inparalog-Suche	
	— Results

At a glance, ρ unfiltered

- classical multidimensional scaling of distance matrix d
- labels: red: human, green: chimp, blue: rhesus macaque
- dense clusters of original and *leave-one-out* networks for each species, but huge interspecies distances

I	nparalog-Suche
	Results

At a glance, $\rho^*={\rm 0.4}$

h	nparalog-Suche
l	 Results

At a glance, $\rho^*={\rm 0.6}$

h	nparalog-Suche
l	 Results

At a glance, $\rho^*=$ 0.8

ļ	nparalog-Suche
	- Results

At a glance

- heatmap of distances, dark color indicates low distance
- ht: human, ct: chimp, rh: rhesus macaque, number: left out individual

I	nparalog-Suche
	- Results

At a glance, $\rho^*={\rm 0.4}$

I	nparalog-Suche
	Results

At a glance, $\rho^*={\rm 0.6}$

I	nparalog-Suche
	Results

At a glance, $\rho^*=$ 0.8

Inparalog-Suche	
Results	

Distribution of ω , Human

omegas, human

I	nparalog-Suche
	Results

Distribution of ω , Chimp

omegas, chimps

Inparalog-Suche	
Results	

Distribution of ω , Rhesus Macaque

omegas, rhesus macaques

Inpara	log-Suche

References

- gene expression data by Stefano Berto
- distance formulae by Katja Nowick